【机器学习】Gaussian Process (GP)

高斯过程(Gaussian Process, GP)

高斯过程是一种用于监督学习的非参数贝叶斯方法,特别适用于回归和分类任务。GP 提供了一种灵活的建模方式,可以自然地量化预测中的不确定性。


核心思想

高斯过程是定义在函数空间上的分布,它假设数据的潜在函数 f(x)的任何有限维样本集合 f(x1),f(x2),…,f(xn)服从联合高斯分布。用公式表示为:

  • m(x):均值函数,表示对函数值的先验均值(通常取 m(x)=0)。
  • k(x,x′):核函数(协方差函数),描述任意两个输入点之间的相关性。

GP 的基本构造

1. 核函数选择

核函数是 GP 的核心,直接影响模型的预测性能。常用的核函数包括:

  • RBF 核(高斯核):

  • 线性核:

  • Matern 核:

2. 回归模型

假设我们有训练数据 {X,y},其中 y=f(X)+ϵ,ϵ∼N(0,σ2)。预测时 GP 使用训练点和核函数计算预测分布:

  • 先验:

  • 后验:

其中:

3. 分类模型

对于分类任务,GP 分类通常结合 高斯过程概率分类器(GPC),通过拉普拉斯近似或变分推断来估计后验分布。


GP 的特点

优势
  1. 非参数建模: 不需要预定义函数形式,灵活性强。
  2. 不确定性量化: 提供预测均值和方差,自然量化不确定性。
  3. 小数据集表现优异: 特别适合小样本、高维数据。
劣势
  1. 计算复杂度高: 训练时间复杂度为 O(n3),存储复杂度为 O(n2)。
  2. 扩展性差: 难以应用于大规模数据集。
  3. 核函数敏感: 性能高度依赖核函数的选择。

适用场景

  1. 回归任务: 比如时间序列预测、物理建模等。
  2. 分类任务: 医疗诊断、文档分类等。
  3. 优化问题: GP 常用于贝叶斯优化,寻找黑盒函数的最优解。

示例代码(回归任务)

以下为使用 Python 和 scikit-learn 的简单 GP 回归例子:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C

# 定义核函数
kernel = C(1.0, (1e-3, 1e3)) * RBF(10, (1e-2, 1e2))

# 构造训练数据
X_train = np.array([1, 3, 5, 6, 8]).reshape(-1, 1)
y_train = np.sin(X_train).ravel()

# 构造测试数据
X_test = np.linspace(0, 10, 100).reshape(-1, 1)

# 创建高斯过程模型
gp = GaussianProcessRegressor(kernel=kernel, alpha=0.1, n_restarts_optimizer=10)

# 拟合数据
gp.fit(X_train, y_train)

# 预测
y_pred, sigma = gp.predict(X_test, return_std=True)

# 可视化
plt.figure()
plt.plot(X_train, y_train, 'r.', markersize=10, label='Training Data')
plt.plot(X_test, y_pred, 'b-', label='Prediction')
plt.fill_between(X_test.ravel(), y_pred - 1.96*sigma, y_pred + 1.96*sigma, alpha=0.2, label='Confidence Interval')
plt.legend()
plt.show()


总结

高斯过程以其灵活性和不确定性量化能力,在小样本机器学习问题中表现出色。但其高计算复杂度限制了在大规模数据集上的应用,因此通常结合稀疏高斯过程或分布式方法来改进扩展性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/951432.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

在 macOS 中,设置自动将文件夹排在最前

文章目录 1、第一步访达设置2、第二步排序方式 需要两步设置 1、第一步访达设置 按名称排序的窗口中 2、第二步排序方式 选择名称

安装rocketmq dashboard

1、访问如下地址: GitHub - apache/rocketmq-dashboard: The state-of-the-art Dashboard of Apache RoccketMQ provides excellent monitoring capability. Various graphs and statistics of events, performance and system information of clients and applica…

消息中间件面试

RabbitMQ 如何保证消息不丢失 消息重复消费 死信交换机 消息堆积怎么解决 高可用机制 Kafka 如何保证消息不丢失 如何保证消息的顺序性 高可用机制 数据清理机制 实现高性能的设计

Scala分布式语言二(基础功能搭建、面向对象基础、面向对象高级、异常、集合)

章节3基础功能搭建 46.函数作为值三 package cn . itbaizhan . chapter03 // 函数作为值,函数也是个对象 object FunctionToTypeValue { def main ( args : Array [ String ]): Unit { //Student stu new Student() /*val a ()>{"GTJin"…

力扣 跳跃游戏

每次更新目标位置时,实际上是在做一个局部的最优选择,选择跳跃能够到达当前目标位置的最远位置。因为每次更新目标位置时,都是基于当前能跳跃到的最远位置,因此最终的结果是全局最优的。 题目 从前往后遍历,更新可以到…

hive迁移后修复分区慢,怎么办?

我有1个30TB的分区表,客户给的带宽只有600MB,按照150%的耗时来算,大概要迁移17小时。 使用hive自带的修复分区命令(一般修复分区比迁移时间长一点),可能要花24小时。于是打算用前面黄大佬的牛B方案。 Hive增…

云计算是如何帮助企业实现高可用性的

想象一下,你正在享受一个悠闲的周末,突然接到同事的电话:公司的核心系统宕机了!这个场景对很多IT从业者来说并不陌生。但在云计算时代,这样的噩梦正在逐渐远去。 一位前辈告诉我:"在技术世界里&#…

xtu oj 1614 数字(加强版)

输出格式# 每行输出一个样例的结果&#xff0c;为一个整数。 样例输入# 3 1 10 101 样例输出# 1 2 3 解题思路&#xff1a;这个题不要想复杂了&#xff0c;很容易超时。 首先需要注意的点&#xff0c;n<10的10000次方&#xff0c;用int或者long long都会爆&#xff0c;所…

欧拉公式和傅里叶变换

注&#xff1a;英文引文机翻&#xff0c;未校。 中文引文未整理去重&#xff0c;如有异常&#xff0c;请看原文。 Euler’s Formula and Fourier Transform Posted byczxttkl October 7, 2018 Euler’s formula states that e i x cos ⁡ x i sin ⁡ x e^{ix} \cos{x} i …

腾讯云AI代码助手-公司职位分析AI助手

作品简介 腾讯云AI代码助手是一款智能工具&#xff0c;专注于为公司提供职位分析服务。通过自然语言处理和机器学习技术&#xff0c;它能快速解析职位描述&#xff0c;提取关键信息&#xff0c;并提供数据驱动的洞察&#xff0c;帮助公司优化招聘流程和职位设计。 技术架构 …

django解决跨域问题

# 1.安装django-cors-headers 库 pip install django-cors-headers -i https://pypi.tuna.tsinghua.edu.cn/simple2.添加到应用程序中 添加 corsheaders 到你的 INSTALLED_APPS 设置中&#xff1a; INSTALLED_APPS [...corsheaders,... ]3.添加中间件 MIDDLEWARE [...cor…

Ubuntu Bash工具

Ubuntu Bash工具 &#x1f4bb;⚡ Ubuntu Bash 工具&#x1f528; 指令列表1. &#x1f50b; 查看电池信息 (-b)2. &#x1f4bb; 查看 CPU 和内存使用情况 (-m)3. &#x1f504; 旋转屏幕 (-r)4. &#x1f513; 解锁屏幕 (-s)5. &#x1f310; 设置代理 (-p <proxy_url>…

c++对结构体的扩充以及类的介绍

作业&#xff1a; 使用C手动封装一个顺序表&#xff0c;包含成员指针变量&#xff0c;成员变量N个 验证模块&#xff08;主函数&#xff09; #include <iostream> #include "seqlist.h"int main() {SeqList A(5);A.myshow();cout<<"返回值为&…

Unity3d 基于Barracuda推理库和YOLO算法实现对象检测功能

前言 近年来&#xff0c;随着AI技术的发展&#xff0c;在游戏引擎中实现和运行机器学习模型的需求也逐渐显现。Unity3d引擎官方推出深度学习推理框架–Barracuda &#xff0c;旨在帮助开发者在Unity3d中轻松地实现和运行机器学习模型&#xff0c;它的主要功能是支持在 Unity 中…

123.【C语言】数据结构之快速排序挖坑法和前后指针法

目录 1.挖坑法 执行流程 代码 运行结果 可读性好的代码 2.前后指针法(双指针法) 执行流程 单趟排序代码 将单趟排序代码改造后 写法1 简洁的写法 3.思考题 1.挖坑法 执行流程 "挖坑法"顾名思义:要有坑位,一开始将关键值放入临时变量key中,在数组中形成…

国产信创实践(国能磐石服务器操作系统CEOS +东方通TongHttpServer)

替换介绍&#xff1a; 国能磐石服务器操作系统CEOS 对标 Linux 服务器操作系统&#xff08;Ubuntu, CentOS&#xff09; 东方通TongHttpServer 对标 Nginx 负载均衡Web服务器 第一步&#xff1a; 服务器安装CEOS映像文件&#xff0c;可直接安装&#xff0c;本文采用使用VMware …

Linux中SSH服务(二)

一、基于公私钥的认证&#xff08;免密登录&#xff09; 1、Windows免密登录Linux Windows推荐安装Cygwin软件&#xff1a;Cygwin 1.1Windows上面生成公私钥 之前已经生成过了&#xff0c;所以显示公私钥已存在 lovezywLAPTOP-AABHB5ED ~ $ ssh-keygen Generating public/pr…

Linux-----进程通讯(管道Pipe)

目录 进程不共享内存 匿名管道 通过匿名管道实现通讯 有名管道 库函数mkfifo() 案例 进程不共享内存 不同进程之间内存是不共享的。是相互独立的。 #include <stdio.h> #include <stdlib.h> #include <errno.h>int num 0;int main(int argc, char con…

[工具]git克隆远程仓库到本地快速操作流程

一、新建空目录 二、初始化本地仓库 git init 初始化成功后&#xff0c;会在当前目录生成一个.git的目录。 三、关联远程仓库 git remote add origin <URL>这一步让本地仓库与远程仓库进行关联&#xff0c;origin是远程仓库的别名&#xff0c;可以自定义。 四、克隆…

机器学习之贝叶斯分类器和混淆矩阵可视化

贝叶斯分类器 目录 贝叶斯分类器1 贝叶斯分类器1.1 概念1.2算法理解1.3 算法导入1.4 函数 2 混淆矩阵可视化2.1 概念2.2 理解2.3 函数导入2.4 函数及参数2.5 绘制函数 3 实际预测3.1 数据及理解3.2 代码测试 1 贝叶斯分类器 1.1 概念 贝叶斯分类器是基于贝叶斯定理构建的分类…