Virgo:增强慢思考推理能力的多模态大语言模型

  每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/

人工智能研究正稳步迈向创建能够进行复杂推理的系统,多模态大语言模型(MLLMs)成为这一进程中的重要突破。MLLMs能够同时处理文本和视觉数据,在解决复杂问题(如数学题目或图表推理)方面展现出独特优势。这些模型通过弥合多种模态之间的差距,拓宽了AI的应用领域,为教育、科学和数据分析等领域带来了全新可能性。

然而,开发这些系统的主要挑战在于如何实现文本和视觉推理的无缝整合。传统的大语言模型通常擅长处理文本或图像,但在需要结合两者进行推理时往往表现不佳。这种局限性使得它们在多模态任务中的表现受到阻碍,尤其是在需要长期、深度思考(常称为“慢思考”)的场景中。解决这一问题是推动MLLMs向实用化迈进的重要一步。

目前,提升MLLM推理能力的策略主要集中在两个方向:一是利用结构化搜索方法(如蒙特卡洛树搜索),通过奖励模型引导优化推理路径;二是为LLMs提供长形式推理指令(通常以“思维链”形式呈现)进行训练。然而,这些方法大多专注于文本任务,对于多模态场景的探索相对有限。虽然一些商用系统(如OpenAI的o1模型)表现出潜力,但其专有性限制了相关研究的开放性,公共领域的探索因此出现了空白。

对此,中国人民大学、百川智能和北京智源人工智能研究院的研究人员联合推出了Virgo模型,这一模型专注于提升多模态背景下的慢思考推理能力。Virgo通过微调Qwen2-VL-72B-Instruct模型开发而成,采用了一种简单却创新的方式,即利用文本型长思考数据进行训练。这种方法将推理能力从文本领域迁移到多模态领域,成为Virgo区别于其他模型的重要特点。

突破性的训练方法
Virgo的开发过程中,研究团队精心构建了包含5000条长思考指令的数据集,涵盖数学、科学和编程领域。这些指令按照结构化的推理过程和最终解决方案进行格式化,以确保训练过程的清晰性和可复制性。研究人员在微调过程中,专注于LLM和跨模态连接器的参数优化,而未对视觉编码器进行调整,从而保留了模型原有的视觉处理能力,同时增强其推理表现。此外,他们还尝试了自蒸馏技术,让经过微调的模型生成视觉型长思考数据,进一步提升Virgo在多模态推理任务中的表现。

卓越的性能表现
Virgo在四个高难度基准测试中进行了评估,包括MathVerse、MathVision、OlympiadBench和MMMU。这些测试包含数千道多模态问题,用以验证模型在文本和视觉输入上的推理能力。结果显示,Virgo表现卓越,不仅超越了许多先进模型,还与一些商用系统相媲美。例如,在MathVision基准测试中,Virgo取得了38.8%的准确率,领先于大多数现有解决方案;在挑战性极高的OlympiadBench测试中,其表现较基础模型提升了12.4%。此外,研究还发现,相较于直接使用多模态训练数据,文本型长思考数据在推理能力的提取上表现更佳,这进一步证明了文本训练对多模态系统的潜在价值。

研究团队对Virgo的表现进行了难度分级分析,发现模型在需要深度推理的高难度任务中表现出持续改进,而在简单任务(如MMMU基准测试)中的提升相对有限。这一发现强调了为特定复杂任务量身定制推理系统的重要性。同时,研究结果还揭示,文本推理数据往往优于视觉推理指令,表明文本训练能够有效地将推理能力迁移到多模态领域。

推动AI多模态研究的未来
Virgo的成功展现了一种高效、实用的提升MLLM能力的方法,不仅填补了多模态推理领域的空白,还为未来研究提供了新的方向。通过利用长思考文本数据,研究人员为开发更高级的推理模型提供了可扩展的解决方案。随着进一步的优化和探索,这种方法有望推动多模态AI研究取得更大突破,为AI技术的实际应用开辟全新路径。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/951274.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

本地缓存:Guava Cache

这里写目录标题 一、范例二、应用场景三、加载1、CacheLoader2、Callable3、显式插入 四、过期策略1、基于容量的过期策略2、基于时间的过期策略3、基于引用的过期策略 五、显示清除六、移除监听器六、清理什么时候发生七、刷新八、支持更新锁定能力 一、范例 LoadingCache<…

Android adb shell GPU信息

Android adb shell GPU信息 先 adb shell 进入控制台。 然后&#xff1a; dumpsys | grep GLES Android adb shell命令捕获systemtrace_android 抓trace-CSDN博客文章浏览阅读2.5k次&#xff0c;点赞2次&#xff0c;收藏8次。本文介绍了如何使用adbshell命令配合perfetto工…

ElasticSearch | Elasticsearch与Kibana页面查询语句实践

关注&#xff1a;CodingTechWork 引言 在当今大数据应用中&#xff0c;Elasticsearch&#xff08;简称 ES&#xff09;以其高效的全文检索、分布式处理能力和灵活的查询语法&#xff0c;广泛应用于各类日志分析、用户行为分析以及实时数据查询等场景。通过 ES&#xff0c;用户…

RK3588平台开发系列讲解(系统篇)Linux Kconfig的语法

文章目录 一、什么是Kconfig二、config模块三、menuconfig四、menu 和 endmenu五、choice 和 endchoice六、source七、depends on八、default九、help十、逻辑表达式沉淀、分享、成长,让自己和他人都能有所收获!😄 一、什么是Kconfig Kconfig的语法及代码结构非常简单。本博…

STM32 USB组合设备 MSC CDC

STM32 USB组合设备 MSC CDC实现 教程 教程请看大佬niu_88 手把手教你使用USB的CDCMSC复合设备&#xff08;基于stm32f407&#xff09; 大佬的教程很好&#xff0c;很详细&#xff0c;我调出来了&#xff0c;代码请见我绑定的资源 注意事项 值得注意的是&#xff1a; 1、 cu…

深入学习RabbitMQ的Direct Exchange(直连交换机)

RabbitMQ作为一种高性能的消息中间件&#xff0c;在分布式系统中扮演着重要角色。它提供了多种消息传递模式&#xff0c;其中Direct Exchange&#xff08;直连交换机&#xff09;是最基础且常用的一种。本文将深入介绍Direct Exchange的原理、应用场景、配置方法以及实践案例&a…

Node.js——path(路径操作)模块

个人简介 &#x1f440;个人主页&#xff1a; 前端杂货铺 &#x1f64b;‍♂️学习方向&#xff1a; 主攻前端方向&#xff0c;正逐渐往全干发展 &#x1f4c3;个人状态&#xff1a; 研发工程师&#xff0c;现效力于中国工业软件事业 &#x1f680;人生格言&#xff1a; 积跬步…

【Verdi实用技巧-Part2】

Verdi实用技巧-Part2 2 Verdi实用技巧-Part22.1 Dump波形常用的task2.1.1 Frequently Used Dump Tasks2.1.2 Demo 2.2 提取波形信息小工具--FSDB Utilities2.3 Debug in Source code view2.3.1 Find Scopes By Find Scope form 2.3.2 Go to line in Souce code View2.3.3 Use B…

web-前端小实验4

实现以上图片中的内容 代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>用户注册</title&…

NLP项目实战——基于Bert模型的多情感评论分类(附数据集和源码)

在当今数字化的时代&#xff0c;分析用户评论中的情感倾向对于了解产品、服务的口碑等方面有着重要意义。而基于强大的预训练语言模型如 Bert 来进行评论情感分析&#xff0c;能够取得较好的效果。 在本次项目中&#xff0c;我们将展示如何利用 Python 语言结合transformers库&…

TAS测评倍智题库 | 益丰大药房2025年中高层测评BA商业推理测评真题考什么?

您好&#xff01;您已被邀请参加360评估。您的评估与反馈将有助于被评估人更深入地了解个人情况&#xff0c;发现个人优势和潜在风险。请您秉持公正、开放的心态进行评估。请尽快完成评估&#xff0c;在此衷心感谢您的配合与支持&#xff01; ​ 相关事宜&#xff1a; 请您在…

优秀的大模型会不会做坏事?

主要围绕大型语言模型&#xff08;LLMs&#xff09;在特定情境下可能出现的欺骗行为及相关研究展开&#xff0c;具体如下&#xff1a; 研究背景与核心发现&#xff1a;研究发现即使在用户无意激励的情况下&#xff0c;LLMs 也可能说谎&#xff0c;而能使用工具的模型更易被诱导…

fiscoBcos落盘加密介绍

落盘加密 落盘加密是在机构内部进行的&#xff0c;每个机构独立管理自己硬盘数据的安全。内网中&#xff0c;每个节点的硬盘数据是被加密的。所有加密数据的访问权限&#xff0c;通过Key Manager来管理。Key Manager是部署在机构内网内&#xff0c;专门管理节点硬盘数据访问秘…

完全二叉树的删除

&#xff08;1&#xff09;删除叶子节点 找到要删除的节点 targetNode找到要删除节点的父节点parent&#xff08;父节点是否存在&#xff09;要删除的节点是父节点的左子树还是右子树如果是左子树&#xff0c;则parent.leftnull;如果是右子树则parent.rightnull。 &#xff08;…

ModuleNotFoundError: No module named ‘setuptools_rust‘ 解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

【算法】时间复杂度以及O(N^2)的排序

目录 1.常数时间的操作 2.时间复杂度 2.1.以选择排序为例 2.2.O(n^2)从何而来 2.3.冒泡排序 2.3.1.抑或运算 2.4.插入排序 3.二分法 3.1.局部最小 4.递归 4.1.递归行为时间复杂度的估计 1.常数时间的操作 一个操作如果和样本的数据量无关&#xff0c;每次都是固定时…

uni app 写的 小游戏,文字拼图?文字拼写?不知道叫啥

从下方的偏旁部首中选在1--3个组成上面文章中的文字&#xff0c;完成的文字标红 不喜勿喷 《满江红》 其中用到了两个文件 strdata.json parameters.json 这两个文件太大 放到资源中了 资源文件 <template><view class"wenzi_page_main"><view c…

【杂记】qt

1、终端下载PySide6以转换文件格式&#xff1a;pip install PySide6 -i https://pypi.tuna.tsinghua.edu.cn/simple 命令提示符下载完毕后&#xff1a;powerShell &#xff1a;cd 跳转到文件对应地址 &#xff08;1、pyside6-uic.exe test.ui -o test.py #将Ui界面文件转换成…

宁德时代2025年Verify入职测评语言理解及数字推理真题SHL题库汇总、考情分析

宁德时代社招Verify入职测评对薪酬有着重要影响&#xff0c;其规定正确率达到80%才能顺利通过测评。这体现了公司对人才专业素养与能力的严格要求&#xff0c;旨在筛选出真正符合岗位需求的优秀人才。测评内容涵盖了专业知识、技能运用、逻辑思维等多方面&#xff0c;只有综合能…

Jenkins-持续集成、交付、构建、部署、测试

Jenkins-持续集成、交付、构建、部署、测试 一: Jenkins 介绍1> Jenkins 概念2> Jenkins 目的3> Jenkins 特性4> Jenkins 作用 二&#xff1a;Jenkins 版本三&#xff1a;DevOps流程简述1> 持续集成&#xff08;Continuous Integration&#xff0c;CI&#xff0…