分布式搜索引擎之elasticsearch基本使用3

分布式搜索引擎之elasticsearch基本使用3

1.部署单点es

1.1.创建网络

因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络:

docker network create es-net

1.2.加载镜像

这里我们采用elasticsearch的7.12.1版本的镜像,这个镜像体积非常大,接近1G。不建议大家自己pull。

资料提供了镜像的tar包:

在这里插入图片描述

将其上传到虚拟机中,然后运行命令加载即可:

# 导入数据
docker load -i es.tar

同理还有kibana的tar包也需要这样做。

1.3.运行

运行docker命令,部署单点es:

docker run -d \
	--name es \
    -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
    -e "discovery.type=single-node" \
    -v es-data:/usr/share/elasticsearch/data \
    -v es-plugins:/usr/share/elasticsearch/plugins \
    --privileged \
    --network es-net \
    -p 9200:9200 \
    -p 9300:9300 \
elasticsearch:7.12.1

命令解释:

  • -e "cluster.name=es-docker-cluster":设置集群名称
  • -e "http.host=0.0.0.0":监听的地址,可以外网访问
  • -e "ES_JAVA_OPTS=-Xms512m -Xmx512m":内存大小
  • -e "discovery.type=single-node":非集群模式
  • -v es-data:/usr/share/elasticsearch/data:挂载逻辑卷,绑定es的数据目录
  • -v es-logs:/usr/share/elasticsearch/logs:挂载逻辑卷,绑定es的日志目录
  • -v es-plugins:/usr/share/elasticsearch/plugins:挂载逻辑卷,绑定es的插件目录
  • --privileged:授予逻辑卷访问权
  • --network es-net :加入一个名为es-net的网络中
  • -p 9200:9200:端口映射配置

在浏览器中输入:http://192.168.150.101:9200 即可看到elasticsearch的响应结果:

在这里插入图片描述

2.部署kibana

kibana可以给我们提供一个elasticsearch的可视化界面,便于我们学习。

2.1.部署

运行docker命令,部署kibana

docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=es-net \
-p 5601:5601  \
kibana:7.12.1
  • --network es-net :加入一个名为es-net的网络中,与elasticsearch在同一个网络中
  • -e ELASTICSEARCH_HOSTS=http://es:9200":设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch
  • -p 5601:5601:端口映射配置

kibana启动一般比较慢,需要多等待一会,可以通过命令:

docker logs -f kibana

查看运行日志,当查看到下面的日志,说明成功:

在这里插入图片描述

此时,在浏览器输入地址访问:http://192.168.150.101:5601,即可看到结果

2.2.DevTools

kibana中提供了一个DevTools界面:

在这里插入图片描述

这个界面中可以编写DSL来操作elasticsearch。并且对DSL语句有自动补全功能。

3.安装IK分词器

3.1.在线安装ik插件(较慢)

# 进入容器内部
docker exec -it elasticsearch /bin/bash

# 在线下载并安装
./bin/elasticsearch-plugin  install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip

#退出
exit
#重启容器
docker restart elasticsearch

3.2.离线安装ik插件(推荐)

1)查看数据卷目录

安装插件需要知道elasticsearch的plugins目录位置,而我们用了数据卷挂载,因此需要查看elasticsearch的数据卷目录,通过下面命令查看:

docker volume inspect es-plugins

显示结果:

[
    {
        "CreatedAt": "2022-05-06T10:06:34+08:00",
        "Driver": "local",
        "Labels": null,
        "Mountpoint": "/var/lib/docker/volumes/es-plugins/_data",
        "Name": "es-plugins",
        "Options": null,
        "Scope": "local"
    }
]

说明plugins目录被挂载到了:/var/lib/docker/volumes/es-plugins/_data 这个目录中。

2)解压缩分词器安装包

下面我们需要把资料中的ik分词器解压缩,重命名为ik

在这里插入图片描述

3)上传到es容器的插件数据卷中

也就是/var/lib/docker/volumes/es-plugins/_data

在这里插入图片描述

4)重启容器

# 4、重启容器
docker restart es
# 查看es日志
docker logs -f es

5)测试:

IK分词器包含两种模式:

  • ik_smart:最少切分

  • ik_max_word:最细切分

GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "程序员学习java太棒了"
}

结果:

{
  "tokens" : [
    {
      "token" : "程序员",
      "start_offset" : 2,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "程序",
      "start_offset" : 2,
      "end_offset" : 4,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "员",
      "start_offset" : 4,
      "end_offset" : 5,
      "type" : "CN_CHAR",
      "position" : 3
    },
    {
      "token" : "学习",
      "start_offset" : 5,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 4
    },
    {
      "token" : "java",
      "start_offset" : 7,
      "end_offset" : 11,
      "type" : "ENGLISH",
      "position" : 5
    },
    {
      "token" : "太棒了",
      "start_offset" : 11,
      "end_offset" : 14,
      "type" : "CN_WORD",
      "position" : 6
    },
    {
      "token" : "太棒",
      "start_offset" : 11,
      "end_offset" : 13,
      "type" : "CN_WORD",
      "position" : 7
    },
    {
      "token" : "了",
      "start_offset" : 13,
      "end_offset" : 14,
      "type" : "CN_CHAR",
      "position" : 8
    }
  ]
}

3.3 扩展词词典

随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:“奥力给”,“传智播客” 等。

所以我们的词汇也需要不断的更新,IK分词器提供了扩展词汇的功能。

1)打开IK分词器config目录:

在这里插入图片描述

2)在IKAnalyzer.cfg.xml配置文件内容添加:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典-->
        <entry key="ext_dict">ext.dic</entry>
</properties>

3)新建一个 ext.dic,可以参考config目录下复制一个配置文件进行修改

传智播客
奥力给

4)重启elasticsearch

docker restart es

# 查看 日志
docker logs -f elasticsearch

在这里插入图片描述

日志中已经成功加载ext.dic配置文件

5)测试效果:

GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "Java就业超过90%,奥力给!"
}

注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑

3.4 停用词词典

在互联网项目中,在网络间传输的速度很快,所以很多语言是不允许在网络上传递的,如:关于宗教、政治等敏感词语,那么我们在搜索时也应该忽略当前词汇。

IK分词器也提供了强大的停用词功能,让我们在索引时就直接忽略当前的停用词汇表中的内容。

1)IKAnalyzer.cfg.xml配置文件内容添加:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典-->
        <entry key="ext_dict">ext.dic</entry>
         <!--用户可以在这里配置自己的扩展停止词字典  *** 添加停用词词典-->
        <entry key="ext_stopwords">stopword.dic</entry>
</properties>

3)在 stopword.dic 添加停用词

都点赞

4)重启elasticsearch

# 重启服务
docker restart elasticsearch
docker restart kibana

# 查看 日志
docker logs -f elasticsearch

日志中已经成功加载stopword.dic配置文件

5)测试效果:

GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "Java就业率超过95%,都点赞,奥力给!"
}

注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑

4.部署es集群

我们会在单机上利用docker容器运行多个es实例来模拟es集群。不过生产环境推荐大家每一台服务节点仅部署一个es的实例。

部署es集群可以直接使用docker-compose来完成,但这要求你的Linux虚拟机至少有4G的内存空间

4.1.创建es集群

首先编写一个docker-compose文件,内容如下:

version: '2.2'
services:
  es01:
    image: elasticsearch:7.12.1
    container_name: es01
    environment:
      - node.name=es01
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es02,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    volumes:
      - data01:/usr/share/elasticsearch/data
    ports:
      - 9200:9200
    networks:
      - elastic
  es02:
    image: elasticsearch:7.12.1
    container_name: es02
    environment:
      - node.name=es02
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    volumes:
      - data02:/usr/share/elasticsearch/data
    ports:
      - 9201:9200
    networks:
      - elastic
  es03:
    image: elasticsearch:7.12.1
    container_name: es03
    environment:
      - node.name=es03
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es02
      - cluster.initial_master_nodes=es01,es02,es03
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    volumes:
      - data03:/usr/share/elasticsearch/data
    networks:
      - elastic
    ports:
      - 9202:9200
volumes:
  data01:
    driver: local
  data02:
    driver: local
  data03:
    driver: local

networks:
  elastic:
    driver: bridge

es运行需要修改一些linux系统权限,修改/etc/sysctl.conf文件

vi /etc/sysctl.conf

添加下面的内容:

vm.max_map_count=262144

然后执行命令,让配置生效:

sysctl -p

通过docker-compose启动集群:

docker-compose up -d

4.2.集群状态监控

kibana可以监控es集群,不过新版本需要依赖es的x-pack 功能,配置比较复杂。

这里推荐使用cerebro来监控es集群状态,官方网址:https://github.com/lmenezes/cerebro

在这里插入图片描述

解压即可使用,非常方便。

解压好的目录如下:

在这里插入图片描述

进入对应的bin目录:

在这里插入图片描述

双击其中的cerebro.bat文件即可启动服务。

在这里插入图片描述

访问http://localhost:9000 即可进入管理界面:

在这里插入图片描述

输入你的elasticsearch的任意节点的地址和端口,点击connect即可:

在这里插入图片描述

绿色的条,代表集群处于绿色(健康状态)。

4.3.创建索引库

1)利用kibana的DevTools创建索引库

在DevTools中输入指令:

PUT /itcast
{
  "settings": {
    "number_of_shards": 3, // 分片数量
    "number_of_replicas": 1 // 副本数量
  },
  "mappings": {
    "properties": {
      // mapping映射定义 ...
    }
  }
}

2)利用cerebro创建索引库

利用cerebro还可以创建索引库:

在这里插入图片描述

填写索引库信息:

在这里插入图片描述

点击右下角的create按钮:

在这里插入图片描述

4.4.查看分片效果

回到首页,即可查看索引库分片效果:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/949523.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

在macOS上安装MySQL

macOS的MySQL有多种不同的形式&#xff1a; 1、本机包安装程序&#xff0c;它使用本机macOS安装程序&#xff08;DMG&#xff09;引导您完成MySQL的安装。有关详细信息&#xff0c;请参阅第2.4.2节&#xff0c;“使用本机包在macOS上安装MySQL”。您可以将包安装程序与macOS一…

Apache HTTPD 换行解析漏洞(CVE-2017-15715)

漏洞简介 pache HTTPD是一款HTTP服务器&#xff0c;它可以通过mod_php来运行PHP网页。其2.4.0~2.4.29版本中存在一个解析漏洞&#xff0c;在解析PHP时&#xff0c;1.php\x0A将被按照PHP后缀进行解析&#xff0c;导致绕过一些服务器的安全策略。 漏洞环境 vulhub/httpd/CVE-2…

jenkins入门4 --window执行execute shell

1、启动关闭jenkins 在Windows环境下&#xff0c;如果你需要关闭Jenkins服务&#xff0c;可以通过以下几种方式&#xff1a; 1、使用Windows服务管理器&#xff1a; 打开“运行”对话框&#xff08;Win R&#xff09;&#xff0c;输入services.msc&#xff0c;然后回车。 在服…

conda安装及demo:SadTalker实现图片+音频生成高质量视频

1.安装conda 下载各个版本地址&#xff1a;https://repo.anaconda.com/archive/ win10版本&#xff1a; Anaconda3-2023.03-1-Windows-x86_64 linux版本&#xff1a; Anaconda3-2023.03-1-Linux-x86_64 Windows安装 环境变量 conda -V2.配置conda镜像源 安装pip conda…

医学图像分析工具01:FreeSurfer || Recon -all 全流程MRI皮质表面重建

FreeSurfer是什么 FreeSurfer 是一个功能强大的神经影像学分析软件包&#xff0c;广泛用于处理和可视化大脑的横断面和纵向研究数据。该软件由马萨诸塞州总医院的Martinos生物医学成像中心的计算神经影像实验室开发&#xff0c;旨在为神经科学研究人员提供一个高效、精确的数据…

vite打包报错“default“ is not exported by “node_modules/dayjs/dayjs.min.js“

vite打包最开始报的错是&#xff1a; 查找各种解决办法后&#xff0c;第一次尝试如下&#xff1a; npm i rollup/plugin-commonjs npm i vite-plugin-require-transform但继续报错&#xff1a; 最后解决办法为&#xff1a; 忽略掉node_modules 在vite.config.ts里修改代码 …

医院管理住院系统的研究与实现

第三章 系统的需求分析和可行性研究 3.1 功能需求 经过对本系统的研究分析&#xff0c;本系统主要是为了方便让医院更快捷的管理。所面向的对象主要有病人、医生和医院的管理人员。病人运用该系统后&#xff0c;可以根据该系统查看自己所需要的信息&#xff0c;包括治疗自己…

安徽省地图arcgis数据美化后mxd文件shp格式下载后内容测评

标题中的“安徽省地图arcgis数据美化后mxd文件shp格式”揭示了这个压缩包的内容是经过GIS处理的、针对安徽省地图数据。ArcGIS是一款由Esri公司开发的专业地理信息系统软件&#xff0c;用于处理、分析和展示地理空间数据。MXD文件是ArcGIS的项目文件&#xff0c;包含了地图布局…

GitLab创建用户,设置访问SSH Key

继上一篇 Linux Red Hat 7.9 Server安装GitLab-CSDN博客 安装好gitlab&#xff0c;启用管理员root账号后&#xff0c;开始创建用户账户 1、创建用户账户 进入管理后台页面 点击 New User 输入用户名、邮箱等必填信息和登录密码 密码最小的8位&#xff0c;不然会不通过 拉到…

计算机网络--根据IP地址和路由表计算下一跳

一、必备知识 1.无分类地址IPV4地址网络前缀主机号 2.每个IPV4地址由32位二进制数组成 3. /15这个地址表示网络前缀有15位&#xff0c;那么主机号32-1517位。 4.地址掩码&#xff08;子网掩码&#xff09;&#xff1a;所对应的网络前缀为1&#xff0c;主机号为0。 5.计算下…

重新整理机器学习和神经网络框架

本篇重新梳理了人工智能&#xff08;AI&#xff09;、机器学习&#xff08;ML&#xff09;、神经网络&#xff08;NN&#xff09;和深度学习&#xff08;DL&#xff09;之间存在一定的包含关系&#xff0c;以下是它们的关系及各自内容,以及人工智能领域中深度学习分支对比整理。…

Element-UI:如何实现表格组件el-table多选场景下根据数据对某一行进行禁止被选中?

如何实现表格组件el-table多选场景下根据数据对某一行进行禁止被选中&#xff1f; 在使用 Element UI 的 Table 组件时&#xff0c;如果你想要禁用某一行的选中&#xff08;特别是在多选模式下&#xff09;&#xff0c;可以通过自定义行的 selectable 属性来实现。selectable …

WebRtc02:WebRtc架构、目录结构、运行机制

整体架构 WebRtc主要分为三层&#xff1a; CAPI层&#xff1a;外层调用Session管理核心层&#xff1a;包括视频引擎、音频引擎、网络传输 可由使用者重写视频引擎&#xff1a;编解码器、视频缓存、视频增强音频引擎&#xff1a;编解码器、音频缓存、回音消除、降噪传输&#x…

资源分享:gpts、kaggle、paperswithcode

gpts 似乎是gpt agent集合&#xff0c;专注于不同细分方向的ai助手。 kaggle 专注于AI相关的培训、竞赛、数据集、大模型。 paperswithcode 简单直接&#xff0c;内容如同网站地址&#xff0c;直接提供优秀代码和配套的论文&#xff0c;似乎还有数据集。

Linux-Ubuntu之裸机驱动最后一弹PWM控制显示亮度

Linux-Ubuntu之裸机驱动最后一弹PWM控制显示亮度 一&#xff0c; PWM实现原理二&#xff0c;软件实现三&#xff0c;正点原子裸机开发总结 一&#xff0c; PWM实现原理 PWM和学习51时候基本上一致&#xff0c;控制频率&#xff08;周期&#xff09;和占空比&#xff0c;51实验…

Java 性能监控工具详解:JConsole、VisualVM 和 Java Mission Control

在 Java 应用程序的开发和维护过程中&#xff0c;性能监控和故障诊断是至关重要的。本文将详细介绍三款常用的 Java 性能监控工具&#xff1a;JConsole、VisualVM 和 Java Mission Control&#xff08;JMC&#xff09;&#xff0c;并探讨它们的功能和使用方法。 1 JConsole 1…

一款好用的书签管理工具

多平台同步&#xff1a;可以在网页端、手机&#xff08;iOS 和 Android&#xff09;端同步使用。无论你是在电脑上浏览网页添加书签&#xff0c;还是在外出时使用手机&#xff0c;都能方便地访问和管理书签。例如&#xff0c;你在办公室电脑上收藏了一篇关于行业研究的网页&…

ansible-api分析(Inventory)

一. 简述&#xff1a; 通过ansible 实现系统初始化功能&#xff0c; 为和平台嵌入&#xff0c; 需要通过ansible的api进行功能实现。 准确来说&#xff0c;ansible并没有纯粹的外部接入api功能&#xff0c; 只是官方提供了原生类&#xff0c;用于继承接入&#xff0c;从而实现a…

智元机器人千台量产,开启具身智能新纪元

近日&#xff0c;智元机器人正式官宣一则重磅消息&#xff1a;其第 1000 台通用具身机器人成功下线&#xff0c;这无疑在科技领域投下了一颗震撼弹&#xff0c;引发行业内外的广泛关注。 这千台下线的机器人中&#xff0c;涵盖 731 台双足人形机器人&#xff0c;如远征 A2、灵…

ROS2 跨机话题通信问题(同一个校园网账号)

文章目录 写在前面的话校园网模式&#xff08;失败&#xff09;手机热点模式&#xff08;成功&#xff09; 我的实验细节实验验证1、ssh 用户名IP地址 终端控制2、互相 ping 通 IP3、ros2 run turtlesim turtlesim_node/turtle_teleop_key4、ros2 multicast send/receive5、从机…