pytorch中nn.Conv2d详解及参数设置原则

文章目录

  • 基础参数
      • 1. `in_channels` (输入通道数)
      • 2. `out_channels` (输出通道数)
      • 3. `kernel_size` (卷积核大小)
      • 4. `stride` (步幅)
      • 5. `padding` (填充)
      • 6. `dilation` (膨胀)
      • 7. `groups` (分组卷积)
      • 8. `bias` (偏置)
  • 如何设置参数?
      • 1. **`in_channels` 和 `out_channels`(输入通道数和输出通道数)**
      • 2. **`kernel_size`(卷积核大小)**
      • 3. **`stride`(步幅)**
      • 4. **`padding`(填充)**
      • 5. **`dilation`(膨胀卷积)**
      • 6. **`groups`(分组卷积)**
      • 7. **`bias`(偏置)**
      • 总结


基础参数

1. in_channels (输入通道数)

  • 定义:表示输入图像的通道数。例如,RGB图像的输入通道数为 3(红色、绿色和蓝色),灰度图像的输入通道数为 1。
  • 作用:指定输入数据的深度。卷积操作会针对每个通道应用滤波器。

实例

conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3)

在这个例子中,in_channels=3 表示输入是一个 RGB 图像(每个图像有 3 个通道),out_channels=64 表示卷积层会生成 64 个特征图。

2. out_channels (输出通道数)

  • 定义:表示卷积层的输出通道数,也就是卷积操作产生的特征图的数量。每个通道是由卷积滤波器生成的。
  • 作用:决定卷积层生成多少个特征图。out_channels 值越大,生成的特征图数量越多,网络的表达能力可能越强,但计算量也会增加。

实例

conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3)

在这个例子中,out_channels=64 表示卷积操作后生成 64 个特征图。

3. kernel_size (卷积核大小)

  • 定义:卷积核(滤波器)的大小,通常是一个正方形(例如 3x3 或 5x5)。它决定了每次卷积操作涉及的像素区域大小。
  • 作用:卷积核大小直接影响感受野(即每个卷积操作关注的区域)。卷积核越大,每个特征图表示的区域越广,但计算量也越大。

实例

conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3)

在这个例子中,kernel_size=3 表示卷积核的大小是 3x3。每次卷积操作会选择 3x3 的区域进行处理。

4. stride (步幅)

  • 定义:步幅控制卷积操作时卷积核滑动的步长。步幅通常是正整数,表示卷积核每次移动的像素数量。
  • 作用:步幅影响输出特征图的尺寸。步幅越大,输出特征图的尺寸越小(因为卷积核每次移动得更远)。通常,步幅为 1 时,卷积核每次移动一个像素,步幅为 2 时,卷积核每次移动两个像素。

实例

conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=2)

在这个例子中,stride=2 表示卷积核每次滑动 2 个像素,因此输出特征图的宽度和高度都将减半。

5. padding (填充)

  • 定义:填充是指在输入图像的边缘添加额外的像素。它的作用是确保卷积操作可以处理边缘的像素,同时可以控制输出特征图的尺寸。
  • 作用:填充可以保持输入和输出的尺寸相同(当步幅为 1 时)。常见的填充方式包括:
    • padding=1:表示在每个边上添加 1 个像素的填充。
    • padding='same':常见的用法,在很多框架中使用,表示填充的大小使得输入和输出的尺寸相同。

实例

conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, padding=1)

在这个例子中,padding=1 表示在输入图像的每个边上添加 1 个像素的填充,这样可以保持输出特征图的尺寸与输入图像相同(当步幅为 1 时)。

6. dilation (膨胀)

  • 定义:膨胀卷积是对卷积核应用间隔的技术,卷积核之间的元素不再是连续的,而是通过空洞来分隔。
  • 作用:膨胀卷积的作用是扩展感受野,能够捕捉更大的上下文信息,而不会增加参数量或计算量。

实例

conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, dilation=2)

在这个例子中,dilation=2 表示卷积核的元素之间间隔为 2,使得感受野扩大,但卷积核的实际大小保持不变。

7. groups (分组卷积)

  • 定义:分组卷积通过将输入通道分成若干组来实现卷积计算。每一组的卷积核只会对属于该组的输入通道进行卷积操作。
  • 作用:分组卷积可以减少计算量,并且在某些任务中(如深度可分离卷积)有助于提升网络性能。

实例

conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=3, groups=3)

在这个例子中,groups=3 表示输入的 3 个通道会被分成 3 组,每组一个卷积核进行卷积操作。这样,卷积层的计算量减少。

8. bias (偏置)

  • 定义:偏置是卷积操作中的一个可学习参数。它会被加到每个卷积结果上,用于调整输出。
  • 作用:在卷积操作之后加上偏置,可以帮助模型更好地拟合训练数据。通常情况下,卷积层会默认有偏置,但可以通过设置 bias=False 来禁用。

实例

conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, bias=True)

在这个例子中,bias=True 表示卷积层会包含偏置。


如何设置参数?

1. in_channelsout_channels(输入通道数和输出通道数)

  • in_channels 由输入数据决定。例如,RGB 图像的 in_channels 为 3,灰度图像的 in_channels 为 1。通常在图像输入层,in_channels 是已知的。
  • out_channels 是一个非常重要的超参数,它影响网络的表达能力和计算量。增加 out_channels 可以增加网络的表达能力,但同时也会增加计算量和内存消耗。输出通道数的选择通常依赖于以下几个因素:
    • 任务复杂度:对于复杂的任务(如图像分类、目标检测),较大的 out_channels 值可以帮助网络学习更丰富的特征。
    • 网络深度:较深的网络可以逐步增加 out_channels,从而提高特征的抽象能力。
    • 计算资源:较大的 out_channels 会增加计算量,因此需要考虑计算资源和推理速度。

实例
对于图像分类任务,通常在第一层使用较小的 out_channels(如 64 或 128),然后在后续层逐步增加(如 256、512 等)。

conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3)
conv2 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3)

2. kernel_size(卷积核大小)

  • 卷积核大小(如 3x3 或 5x5)决定了每次卷积操作所查看的图像区域。
  • 3x3 卷积核 是最常用的选择,它在很多现代网络架构中表现出色,原因是:
    • 计算效率:相对于较大的卷积核(如 5x5、7x7),3x3 卷积核可以通过堆叠多个层来扩展感受野,从而节省计算量。例如,两个 3x3 的卷积核可以实现与 5x5 卷积核相同的感受野,但计算量较小。
    • 深度卷积结构:3x3 卷积核有助于建立深度网络结构,通过多个层级来学习复杂的特征。
  • 大卷积核(如 5x5 或 7x7) 通常用于初始层,尤其是当输入图像非常大时,可以一次性捕获更多的空间信息。

实例

  • 如果网络较浅,可以使用较大的卷积核来捕捉较大的特征。
  • 在深度网络中,可以使用 3x3 卷积核,堆叠多个卷积层来逐步提取更高阶的特征。
conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3)  # 常见的3x3卷积
conv2 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=5)  # 较大的卷积核

3. stride(步幅)

  • 步幅决定了卷积核滑动的速度,影响输出特征图的尺寸。步幅越大,输出特征图的尺寸越小。
  • 在下采样(如池化)时,通常会选择步幅为 2,以减少特征图的尺寸并增加感受野。
  • 对于大部分应用,步幅通常设置为 1,特别是在中间层,用于精细提取特征;而在初始层或下采样层,步幅可以设置为 2。

实例

  • 如果希望减少输出特征图的尺寸,可以设置步幅为 2,例如在下采样阶段。
  • 如果需要更精细的特征提取,步幅通常设置为 1。
conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=2)  # 下采样
conv2 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1)  # 特征提取

4. padding(填充)

  • 填充可以在输入图像的边缘添加额外的像素,避免卷积操作导致的尺寸缩小。合理设置填充有助于保持特征图的尺寸,尤其是在步幅为 1 时。
  • same 填充:当步幅为 1 时,使用填充可以保证输入和输出的尺寸相同。常见的做法是根据卷积核的大小自动计算填充量,以保持尺寸不变。
  • 在较深的网络中,通常使用填充保持特征图的空间尺寸,避免在多个卷积层中丢失过多的空间信息。

实例

  • 如果想要输入和输出具有相同的空间尺寸,可以使用 padding=1 对于 3x3 卷积核。
  • 如果希望特征图缩小,可以减少填充量,或者不使用填充。
conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, padding=1)  # 输出尺寸不变
conv2 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=0)  # 输出尺寸缩小

5. dilation(膨胀卷积)

  • 膨胀卷积通过增加卷积核元素之间的间隔来扩大感受野,通常用于捕捉长距离依赖。
  • 在任务中,如果需要捕捉较大的上下文信息(例如语义分割、目标检测),可以使用膨胀卷积来增加感受野而不增加计算量。

实例

  • 在语义分割中,膨胀卷积常用于提取更大范围的上下文信息。
conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, dilation=2)  # 膨胀卷积

6. groups(分组卷积)

  • 分组卷积通过将输入分成多个组进行卷积,可以有效减少计算量和内存消耗,常见于 深度可分离卷积(depthwise separable convolutions)。
  • 分组卷积有助于减少参数数量,同时还可以增加网络的计算效率,特别是在移动端或资源受限的设备上。

实例

  • 在移动端模型(如 MobileNet)中,通常使用分组卷积来减少计算量。
conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, groups=3)  # 分组卷积

7. bias(偏置)

  • 在大多数情况下,卷积层的偏置是启用的(bias=True),这有助于网络学习更灵活的偏移量。仅在特殊情况下才禁用偏置,如批量归一化层后面。

实例

  • 默认情况下,bias=True 是常见的设置。
conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, bias=True)

总结

设计卷积神经网络时,合理选择这些参数需要结合实际需求:

  • 对于 简单任务,可以选择较小的输出通道数和标准的 3x3 卷积核。
  • 对于 复杂任务,可以使用较大的输出通道数和堆叠多个卷积层。
  • 使用 步幅填充 控制特征图的尺寸变化,保持适当的空间信息。
  • 资源受限的环境 中,可以选择分组卷积和膨胀卷积来减少计算量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/947551.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C#实现画图,及实现图像运动,C#中GDI+图形图像技术(Graphics类、Pen类、Brush类)C#之快速入门GDI+绘图 C#实现快速画图功能

下载源码 <-------- 在C#的世界里&#xff0c;GDI如同一位多才多艺的艺术家&#xff0c;以其强大的绘图能力&#xff0c;让开发者能够轻松地在应用程序中挥洒创意&#xff0c;绘制出丰富多彩的图形世界。GDI不仅支持基本的几何图形绘制&#xff0c;还能处理复杂的图像处理任…

Echart实现3D饼图示例

在可视化项目中&#xff0c;很多地方会遇见图表&#xff1b;echart是最常见的&#xff1b;这个示例就是用Echart&#xff0c; echart-gl实现3D饼图效果&#xff0c;复制即可用 //需要安装&#xff0c;再引用依赖import * as echarts from "echarts"; import echar…

Devart dotConnect发布全新版本,支持EF Core 9、完全兼容 .NET 9 等!

dotConnect &#xff08;最新版dotConnect Universal试用下载&#xff09;是Devart旗下一种基于 ADO.NET 架构构建的增强型数据连接解决方案&#xff0c;也是一个采用多项创新技术的开发框架。dotConnect 包含面向主要数据库和流行云应用程序的高性能数据提供程序&#xff0c;并…

借助 FinClip 跨端技术探索鸿蒙原生应用开发之旅

在当今数字化浪潮汹涌澎湃的时代&#xff0c;移动应用开发领域正经历着深刻的变革与创新。鸿蒙操作系统的崛起&#xff0c;以其独特的分布式架构和强大的性能表现&#xff0c;吸引了众多开发者的目光。而FinClip 跨端技术的出现&#xff0c;为开发者涉足鸿蒙原生应用开发提供了…

UE5.3 虚幻引擎 Windows插件开发打包(带源码插件打包、无源码插件打包)

0 引言 随着项目体量的增大&#xff0c;所有代码功能都放一起很难管理。所以有什么办法可以将大模块划分成一个个小模块吗。当然有&#xff0c;因为虚幻引擎本身就遇到过这个问题&#xff0c;他的解决办法就是使用插件的形式开发。 例如&#xff0c;一个团队开发了文件I/O模块插…

如何轻松关闭 iPhone 上的 HEIC [HEIC 图像技巧]

您是否正在为关闭 iPhone 上的 HEIC 而烦恼&#xff1f;你不是一个人; Apple 的首选图像文件格式仍可能存在一些兼容性问题。当您与某人共享照片或尝试在Windows计算机上打开图像时&#xff0c;就会出现此问题。幸运的是&#xff0c;Apple 使关闭 HEIC iPhone 变得更加容易。 …

GRU-PFG:利用图神经网络从股票因子中提取股票间相关性

“MCI-GRU: Stock Prediction Model Based on Multi-Head Cross-Attention and Improved GRU” 论文地址&#xff1a;https://arxiv.org/pdf/2410.20679 摘要 金融市场因复杂性及大数据时代的来临&#xff0c;使得准确预测股票走势变得尤为重要。传统的时序分析模型&#xff0…

UE5失真材质

渐变材质函数&#xff1a;RadialGradientExponential&#xff08;指数径向渐变&#xff09; 函数使用 UV 通道 0 来产生径向渐变&#xff0c;同时允许用户调整半径和中心点偏移。 用于控制渐变所在的位置及其涵盖 0-1 空间的程度。 基于 0-1 的渐变中心位置偏移。 源自中心的径…

Go语言在实际项目中的应用:从RESTful API到日志监控 (十四)

Go语言在实际项目中的应用&#xff1a;从RESTful API到日志监控 &#x1f680; Go语言&#xff08;又叫Golang&#xff09;作为一种现代化的编程语言&#xff0c;凭借其简洁的语法和强大的性能&#xff0c;已经成为了很多企业技术栈的一部分。在实际项目中&#xff0c;Go不仅仅…

3blue1brow线代笔记

向量 物理&#xff1a;空间中的箭头&#xff0c;长度和方向决定一个向量。只要两者相同&#xff0c;可以任意移动保持不变 计算机&#xff1a;有序的数字列表 &#xff08;数组&#xff09; 数学&#xff1a;向量可以是任何东西&#xff0c;只要保证两个向量相加以及数字与向量…

壁纸样机神器,这个工具适合专业设计师用吗?

壁纸样机神器在一定程度上适合专业设计师使用&#xff0c;但是否适合具体取决于设计师的需求和使用场景&#xff1a; 适合专业设计师的方面 快速实现设计想法&#xff1a;专业设计师在创作过程中&#xff0c;有时需要快速将设计想法变为可视化的效果图&#xff0c;以便进行初…

STM32CUBEIDE FreeRTOS操作教程(十二):std dynamic memory 标准动态内存

STM32CUBEIDE FreeRTOS操作教程&#xff08;十二&#xff09;&#xff1a;std dynamic memory 标准动态内存 STM32CUBE开发环境集成了STM32 HAL库进行FreeRTOS配置和开发的组件&#xff0c;不需要用户自己进行FreeRTOS的移植。这里介绍最简化的用户操作类应用教程。以STM32F40…

在线机考|2024华为实习秋招春招编程题(最新)——第3题_PCB印刷电路板布线_300分(八)

题目内容 在PCB印刷电路板设计中,器件之间的连线需要避免线路的阻抗值增大、而且赛件之间还有别的器件和别的干扰源,在布线时我们希望受到的干扰尽量小。现将电路板简化成一个MN的矩阵,每个位置(单元格)的值表示其源干扰度。 如果单元格的值为0,表示此位置没有干扰源;如果单…

1961-2022年中国大陆多干旱指数数据集(SPI/SPEI/EDDI/PDSI/SC-PDSI/VPD)

DOI: 10.5194/essd-2024-270 干旱指数对于评估和管理缺水和农业风险至关重要;然而&#xff0c;现有数据集中缺乏统一的数据基础&#xff0c;导致不一致&#xff0c;对干旱指数的可比性提出了挑战。本研究致力于创建CHM_Drought&#xff0c;这是一个创新且全面的长期气象干旱数…

建造者模式 Builder Pattern

在创建一个对象的时候&#xff0c;构造器参数有点多&#xff0c;而且有些参数还是可选的&#xff0c;再者还有不少同类型的&#xff0c;那就更应该使用 builder 模式了。 使用 Builder 模式的初衷是 把易变性&#xff08;mutability&#xff09;移动到Builder类&#xff0c;而…

【人工智能机器学习基础篇】——深入详解监督学习之模型评估:掌握评估指标(准确率、精确率、召回率、F1分数等)和交叉验证技术

深入详解监督学习之模型评估 在监督学习中&#xff0c;模型评估是衡量模型性能的关键步骤。有效的模型评估不仅能帮助我们理解模型在训练数据上的表现&#xff0c;更重要的是评估其在未见数据上的泛化能力。本文将深入探讨监督学习中的模型评估方法&#xff0c;重点介绍评估指…

Linux(Ubuntu24.04)源码编译安装VTK7.1.1记录

VTK&#xff08;Visualization Toolkit&#xff09;是一个开源的3D可视化开发工具包&#xff0c;用于开发可视化和图形处理应用程序。VTK提供了一系列的算法和工具&#xff0c;用于创建、渲染和处理复杂的3D图形和数据。VTK由C编写&#xff0c;并提供了Python、Java和Tcl等语言…

FICO财务模块在SAP ECC与S4 HANA系统间的差异有哪些?

【SAP系统研究】 #SAP #FICO #ECC #HANA #Oracle #SAP财务 尽管SAP S4/HANA已经发布很久&#xff0c;但使用SAP ECC系统的企业也仍然很多。 这两个系统在FICO模块中有哪些常见的不同呢&#xff1f; 1、数据库表 ①SAP ECC系统 可以在Oracle、IBM DB2等数据库上运行 ②SAP S…

CDPHudi实战-集成spark

[一]使用Spark-shell 1-配置hudi Jar包 [rootcdp73-1 ~]# for i in $(seq 1 6); do scp /opt/software/hudi-1.0.0/packaging/hudi-spark-bundle/target/hudi-spark3.4-bundle_2.12-1.0.0.jar cdp73-$i:/opt/cloudera/parcels/CDH/lib/spark3/jars/; done hudi-spark3.4-bu…

mac m2 安装 docker

文章目录 安装1.下载安装包2.在downloads中打开3.在启动台打开打开终端验证 修改国内镜像地址小结 安装 1.下载安装包 到官网下载适配的安装包&#xff1a;https://www.docker.com/products/docker-desktop/ 2.在downloads中打开 拖过去 3.在启动台打开 选择推荐设置 …