大数据技术-Hadoop(三)Mapreduce的介绍与使用

目录

一、概念和定义

二、WordCount案例

1、WordCountMapper

2、WordCountReducer

3、WordCountDriver

三、序列化

1、为什么序列化

2、为什么不用Java的序列化

3、Hadoop序列化特点:

4、自定义bean对象实现序列化接口(Writable)

4.1、bean

4.2、FlowBeanMapper

4.3、FlowReducer

4.4、FlowDriver

四、MapReduce框架原理

1、mapreduce流程

 2、Shuffle机制

3、Partion分区

3.1、 默认分区方法

3.2、自定义分区

4、WritableComparable

5、Combiner合并

6、自定义FileOutputFormat

7、Reduce Join

8、数据清洗 ETL

五、数据压缩

1、参数说明

2、代码示例

六、完整代码

七、参考


一、概念和定义

        请看 https://blog.csdn.net/weixin_48935611/article/details/137856999,这个文章概括的很全面,本文主要展示MapReduce的使用。

二、WordCount案例

1、WordCountMapper

package com.xiaojie.hadoop.mapreduce.wordcount;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

/**
 * @author 熟透的蜗牛
 * @version 1.0
 * @description: TODO
 * @date 2024/12/27 9:00
 */
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {

    Text kOut = new Text();
    IntWritable vOut = new IntWritable(1);

    /**
     * @param key     偏移量
     * @param value   文本值
     * @param context 上下文
     * @description:
     * @return: void
     * @author 熟透的蜗牛
     * @date: 2024/12/27 9:01
     */
    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {
//        hello world
//        hello mapreduce
//        hello haddop
//        hadoop
//        java
//        mysql
//        mysql orcale
        /**
         这里输出的结果为(hello,1)(world,1)(hello,1) (mapreduce,1)(hello,1)......
         */


        //获取一行,输入的内容
        String line = value.toString();
        //分隔
        String[] words = line.split(" ");
        for (String word : words) {
            kOut.set(word);
            //kout 即为单词 vout 单词出现的次数
            context.write(kOut, vOut);
        }

    }
}

2、WordCountReducer

package com.xiaojie.hadoop.mapreduce.wordcount;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

/**
 * @author 熟透的蜗牛
 * @version 1.0
 * @description: reduce把map的输出当作输入
 * @date 2024/12/27 9:17
 */
public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {

    int sum;
    IntWritable v = new IntWritable();

    /**
     * @param key     map 输出的key kOut
     * @param values  map输出的value Vout
     * @param context
     * @description:
     * @return: void
     * @author 熟透的蜗牛
     * @date: 2024/12/27 9:22
     */
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
        //累加求和,合并map传递过来的值
        sum = 0;
        for (IntWritable val : values) {
            sum += val.get();
        }
        //输出结果
        v.set(sum);
        context.write(key, v);
    }
}

3、WordCountDriver

package com.xiaojie.hadoop.mapreduce.wordcount;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

/**
 * @author 熟透的蜗牛
 * @version 1.0
 * @description: TODO
 * @date 2024/12/27 9:23
 */
public class WordCountDriver {

    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {

        // 1 获取配置信息以及获取job对象
        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);

        // 2 关联本Driver程序的jar
        job.setJarByClass(WordCountDriver.class);
        // 3 关联Mapper和Reducer的jar
        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordCountReducer.class);

        // 4 设置Mapper输出的kv类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        // 5 设置最终输出kv类型

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        // 6 设置输入和输出路径
        FileInputFormat.setInputPaths(job, new Path("D:\\hadoop\\hello.txt"));
        FileOutputFormat.setOutputPath(job, new Path("D:\\hadoop\\wordcount"));

        // 7 提交job
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);

    }
}

三、序列化

1、为什么序列化

一般来说,“活的”对象只生存在内存里,关机断电就没有了。而且“活的”对象只能由本地的进程使用,不能被发送到网络上的另外一台计算机。然而序列化可以存储“活的”对象,可以将“活的”对象发送到远程计算机。

2、为什么不用Java的序列化

Java的序列化是一个重量级序列化框架(Serializable),一个对象被序列化后,会附带很多额外的信息(各种校验信息,Header,继承体系等),不便于在网络中高效传输。所以,Hadoop自己开发了一套序列化机制(Writable)。

3、Hadoop序列化特点:

  • 1)紧凑高效使用存储空间。
  • 2)快速:读写数据的额外开销小。
  • (3)互操作:支持多语言的交互

4、自定义bean对象实现序列化接口(Writable)

4.1、bean

package com.xiaojie.hadoop.mapreduce.flow;

import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

/**
 * @author 熟透的蜗牛
 * @version 1.0
 * @description: 定义一个bean 实现 writable接口
 * @date 2024/12/27 10:25
 */
public class FlowBean implements Writable {

    private long upFlow; //上行流量
    private long downFlow; //下行流量
    private long sumFlow; //总流量

    //创建无参构造函数
    public FlowBean() {
    }

    //创建gettter setter 方法
    public long getUpFlow() {
        return upFlow;
    }

    public void setUpFlow(long upFlow) {
        this.upFlow = upFlow;
    }

    public long getDownFlow() {
        return downFlow;
    }

    public void setDownFlow(long downFlow) {
        this.downFlow = downFlow;
    }

    public long getSumFlow() {
        return sumFlow;
    }

    public void setSumFlow(long sumFlow) {
        this.sumFlow = sumFlow;
    }

    //重写setSumFlow 方法
    public void setSumFlow() {
        this.sumFlow = this.upFlow + this.downFlow;
    }

    //重写序列化方法,输出和输入的顺序要保持一致
    @Override
    public void write(DataOutput out) throws IOException {
        out.writeLong(upFlow);
        out.writeLong(downFlow);
        out.writeLong(sumFlow);

    }

    @Override
    public void readFields(DataInput in) throws IOException {
        this.upFlow = in.readLong();
        this.downFlow = in.readLong();
        this.sumFlow = in.readLong();

    }

    //结果显示在文本中,重写tostring 方法,
    @Override
    public String toString() {
        return upFlow + "\t" + downFlow + "\t" + sumFlow;

    }
}

4.2、FlowBeanMapper

package com.xiaojie.hadoop.mapreduce.flow;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

/**
 * @author 熟透的蜗牛
 * @version 1.0
 * @description: 流量mapper
 * @date 2024/12/27 10:32
 */
public class FlowBeanMapper extends Mapper<LongWritable, Text, Text, FlowBean> {

    //定义一个输出的key
    private Text outKey = new Text();
    //定义输出的value 即 FlowBean
    private FlowBean outValue = new FlowBean();

    /**
     * @param key     map的输入值偏移量
     * @param value   map 的输入value
     * @param context
     * @description:
     * @return: void
     * @author 熟透的蜗牛
     * @date: 2024/12/27 10:35
     */
    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, FlowBean>.Context context) throws IOException, InterruptedException {

        //获取一行数据
        String line = value.toString();
        //切割数据
        String[] split = line.split("\t");

        //抓取我们需要的数据:手机号,上行流量,下行流量
        String phone = split[1];  //手机号
        //上行流量 ,由于有的数据没有,这里从后面取值
        Long upFlow = Long.parseLong(split[split.length - 3]);
        Long downFlow = Long.parseLong(split[split.length - 2]);

        //封装输出结果
        //设置输出的key
        outKey.set(phone);
        //设置输出的value
        outValue.setUpFlow(upFlow);
        outValue.setDownFlow(downFlow);
        outValue.setSumFlow();
        //写出outK outV
        context.write(outKey, outValue);
    }
}

4.3、FlowReducer

package com.xiaojie.hadoop.mapreduce.flow;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

/**
 * @author 熟透的蜗牛
 * @version 1.0
 * @description: 定义流量输出的reduce
 * @date 2024/12/27 10:46
 */
public class FlowReducer extends Reducer<Text, FlowBean, Text, FlowBean> {

    private FlowBean finalOutV = new FlowBean();

    @Override
    protected void reduce(Text key, Iterable<FlowBean> values, Reducer<Text, FlowBean, Text, FlowBean>.Context context) throws IOException, InterruptedException {

        long totalUp = 0;
        long totalDown = 0;
        //遍历values,将其中的上行流量,下行流量分别累加
        for (FlowBean bean : values) {
            totalUp += bean.getUpFlow();
            totalUp += bean.getDownFlow();
        }
        //封装输出结果
        finalOutV.setUpFlow(totalUp);
        finalOutV.setDownFlow(totalDown);
        finalOutV.setSumFlow();
        //输出结果
        context.write(key, finalOutV);

    }
}

4.4、FlowDriver

package com.xiaojie.hadoop.mapreduce.flow;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

/**
 * @author 熟透的蜗牛
 * @version 1.0
 * @description: 驱动
 * @date 2024/12/27 10:55
 */
public class FlowDriver {

    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {

        //获取job对象
        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);
        //设置jar
        job.setJarByClass(FlowDriver.class);

        //设置manpper 和reducer
        job.setMapperClass(FlowBeanMapper.class);
        job.setReducerClass(FlowReducer.class);

        //设置map输出kv类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(FlowBean.class);

        //设置最终输出结果kv
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

        //设置输入输出路径
        FileInputFormat.setInputPaths(job, new Path("d://hadoop//phone.txt"));
        FileOutputFormat.setOutputPath(job, new Path("d://hadoop//phone"));

        //提交任务
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);

    }
}

四、MapReduce框架原理

1、mapreduce流程

直观的效果,图片来自 https://blog.csdn.net/weixin_48935611/article/details/137856999

 2、Shuffle机制

Map方法之后,Reduce方法之前的数据处理过程称之为Shuffle

(1)MapTask收集我们的map()方法输出的kv对,放到内存缓冲区中

(2)从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件

(3)多个溢出文件会被合并成大的溢出文件

(4)在溢出过程及合并的过程中,都要调用Partitioner进行分区和针对key进行排序

(5)ReduceTask根据自己的分区号,去各个MapTask机器上拉取相应的结果分区数据

(6)ReduceTask会抓取到同一个分区的来自不同MapTask的结果文件,ReduceTask会将这些文件再进行合并(归并排序)

(7)合并成大文件后,Shuffle的过程也就结束了,后面进入ReduceTask的逻辑运算过程(从文件中取出一个一个的键值对Group,调用用户自定义的reduce()方法)

注意:

(1)Shuffle中的缓冲区大小会影响到MapReduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快。

(2)缓冲区的大小可以通过参数调整,参数:mapreduce.task.io.sort.mb默认100M。

3、Partion分区

3.1、 默认分区方法

public int getPartition(K key, V value,
                          int numReduceTasks) {
    return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;
  }

分区个数小于1的时候,就不会再执行上面的分区计算

3.2、自定义分区

package com.xiaojie.hadoop.mapreduce.partitioner;

import org.apache.commons.lang3.StringUtils;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;

/**
 * @author 熟透的蜗牛
 * @version 1.0
 * @description: 自定义分区
 * @date 2024/12/29 15:52
 */
public class ProvincePartitioner extends Partitioner<Text, FlowBean> {

    /**
     * @param text          键值
     * @param flowBean      值
     * @param numPartitions 返回的分区数
     * @description: 分区逻辑, 手机号136、137、138、139开头都分别放到一个独立的4个文件中,其他开头的放到一个文件中
     * @return: int
     * @author 熟透的蜗牛
     * @date: 2024/12/29 15:54
     */
    @Override
    public int getPartition(Text text, FlowBean flowBean, int numPartitions) {
        int partition;
        if (StringUtils.isNotBlank(text.toString())) {
            if (text.toString().startsWith("136")) {
                partition = 0;
            } else if (text.toString().startsWith("137")) {
                partition = 1;
            } else if (text.toString().startsWith("138")) {
                partition = 2;
            } else if (text.toString().startsWith("139")) {
                partition = 3;
            } else {
                partition = 4;
            }
        } else {
            partition = 4;
        }
        return partition;
    }
}
package com.xiaojie.hadoop.mapreduce.partitioner;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

/**
 * @author 熟透的蜗牛
 * @version 1.0
 * @description: 驱动
 * @date 2024/12/27 10:55
 */
public class FlowDriver {

    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {

        //获取job对象
        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);
        //设置jar
        job.setJarByClass(FlowDriver.class);

        //设置manpper 和reducer
        job.setMapperClass(FlowBeanMapper.class);
        job.setReducerClass(FlowReducer.class);

        //设置map输出kv类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(FlowBean.class);

        //设置最终输出结果kv
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

        //设施任务数 ,这里设置的要和分区个数一致,如果任务数>分区数则输出文件会有多个为空的文件,如果任务数>1并且<分区数,会有数据无法处理发生异常,
        // 如果任务数为1 ,只会产生一个文件,分区号必须从0开始,逐渐累加
        job.setNumReduceTasks(5);

        //指定自定义分区类
        job.setPartitionerClass(ProvincePartitioner.class);
        //设置输入输出路径
        FileInputFormat.setInputPaths(job, new Path("d://hadoop//phone.txt"));
        FileOutputFormat.setOutputPath(job, new Path("d://hadoop//phone33"));

        //提交任务
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);

    }
}

4、WritableComparable

  @Override
    public int compareTo(FlowBean o) {
        //按照总流量比较,倒序排列
        if (this.sumFlow > o.sumFlow) {
            return -1;
        } else if (this.sumFlow < o.sumFlow) {
            return 1;
        } else {
            //如果总流量一样,按照上行流量排
            if (this.upFlow > o.upFlow) {
                return -1;
            } else if (this.upFlow < o.upFlow) {
                return 1;
            }
            return 0;
        }
    }

5、Combiner合并

package com.xiaojie.hadoop.mapreduce.combiner;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

/**
 * @author 熟透的蜗牛
 * @version 1.0
 * @description: TODO
 * @date 2024/12/29 18:50
 */
public class WordCountCombiner extends Reducer<Text, IntWritable, Text, IntWritable> {

   IntWritable outV= new IntWritable(0);
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
       int sum = 0;
        for (IntWritable val : values) {
            sum+=val.get();
        }
        outV.set(sum);
        context.write(key, outV);
    }
}
package com.xiaojie.hadoop.mapreduce.combiner;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

/**
 * @author 熟透的蜗牛
 * @version 1.0
 * @description: TODO
 * @date 2024/12/27 9:23
 */
public class WordCountDriver {

    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {

        // 1 获取配置信息以及获取job对象
        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);

        // 2 关联本Driver程序的jar
        job.setJarByClass(WordCountDriver.class);
        // 3 关联Mapper和Reducer的jar
        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordCountReducer.class);

        // 4 设置Mapper输出的kv类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        // 5 设置最终输出kv类型

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        //设置Combiner
        job.setCombinerClass(WordCountCombiner.class);

        // 6 设置输入和输出路径
        FileInputFormat.setInputPaths(job, new Path("D:\\hadoop\\hello.txt"));
        FileOutputFormat.setOutputPath(job, new Path("D:\\hadoop\\wordcount13"));

        // 7 提交job
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);

    }
}

6、自定义FileOutputFormat

package com.xiaojie.hadoop.mapreduce.outputformat;

import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

/**
 * @author 熟透的蜗牛
 * @version 1.0
 * @description: TODO
 * @date 2024/12/29 20:29
 */
public class LogOutputFormat extends FileOutputFormat<Text, NullWritable> {


    @Override
    public RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext job) throws IOException, InterruptedException {
        //创建一个自定义的RecordWriter返回
        LogRecordWriter logRecordWriter = new LogRecordWriter(job);
        return logRecordWriter;

    }
}
package com.xiaojie.hadoop.mapreduce.outputformat;

import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;

import java.io.IOException;

/**
 * @author 熟透的蜗牛
 * @version 1.0
 * @description: TODO
 * @date 2024/12/29 20:31
 */
public class LogRecordWriter extends RecordWriter<Text, NullWritable> {

    private FSDataOutputStream fileOut;
    private FSDataOutputStream otherOut;

    public LogRecordWriter(TaskAttemptContext job) {
        try {
            //获取文件系统对象
            FileSystem fs = FileSystem.get(job.getConfiguration());
            //用文件系统对象创建两个输出流对应不同的目录
            fileOut = fs.create(new Path("d:/hadoop/file.log"));
            otherOut = fs.create(new Path("d:/hadoop/other.log"));
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    @Override
    public void write(Text key, NullWritable value) throws IOException, InterruptedException {
        String log = key.toString();
        //根据一行的log数据是否包含atguigu,判断两条输出流输出的内容
        if (log.contains("atguigu")) {
            fileOut.writeBytes(log + "\n");
        } else {
            otherOut.writeBytes(log + "\n");
        }

    }

    @Override
    public void close(TaskAttemptContext context) throws IOException, InterruptedException {
        //关流
        IOUtils.closeStream(fileOut);
        IOUtils.closeStream(otherOut);
    }
}

7、Reduce Join

package com.xiaojie.hadoop.mapreduce.join2;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;


public class MapJoinDriver {

    public static void main(String[] args) throws IOException, URISyntaxException, ClassNotFoundException, InterruptedException {

        // 1 获取job信息
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);
        // 2 设置加载jar包路径
        job.setJarByClass(MapJoinDriver.class);
        // 3 关联mapper
        job.setMapperClass(MapJoinMapper.class);
        // 4 设置Map输出KV类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(NullWritable.class);
        // 5 设置最终输出KV类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(NullWritable.class);

        // 加载缓存数据
        job.addCacheFile(new URI("file:///D:/hadoop/pd.txt"));
        // Map端Join的逻辑不需要Reduce阶段,设置reduceTask数量为0
        job.setNumReduceTasks(0);

        // 6 设置输入输出路径
        FileInputFormat.setInputPaths(job, new Path("D:\\hadoop\\order"));
        FileOutputFormat.setOutputPath(job, new Path("D:\\hadoop\\output2222"));
        // 7 提交
        boolean b = job.waitForCompletion(true);
        System.exit(b ? 0 : 1);
    }
}
package com.xiaojie.hadoop.mapreduce.join2;

import org.apache.commons.lang3.StringUtils;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URI;
import java.util.HashMap;
import java.util.Map;

public class MapJoinMapper extends Mapper<LongWritable, Text, Text, NullWritable> {

    private Map<String, String> pdMap = new HashMap<>();
    private Text text = new Text();

    //任务开始前将pd数据缓存进pdMap
    @Override
    protected void setup(Context context) throws IOException, InterruptedException {

        //通过缓存文件得到小表数据pd.txt
        URI[] cacheFiles = context.getCacheFiles();
        Path path = new Path(cacheFiles[0]);

        //获取文件系统对象,并开流
        FileSystem fs = FileSystem.get(context.getConfiguration());
        FSDataInputStream fis = fs.open(path);

        //通过包装流转换为reader,方便按行读取
        BufferedReader reader = new BufferedReader(new InputStreamReader(fis, "UTF-8"));

        //逐行读取,按行处理
        String line;
        while (StringUtils.isNotEmpty(line = reader.readLine())) {
            //切割一行    
        //01	小米
            String[] split = line.split("\t");
            pdMap.put(split[0], split[1]);
        }

        //关流
        IOUtils.closeStream(reader);
    }

    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, NullWritable>.Context context) throws IOException, InterruptedException {
        //读取大表数据
        //1001	01	1
        String[] fields = value.toString().split("\t");
        //通过大表每行数据的pid,去pdMap里面取出pname
        String pname = pdMap.get(fields[1]);
        //将大表每行数据的pid替换为pname
        text.set(fields[0] + "\t" + pname + "\t" + fields[2]);
        //写出
        context.write(text,NullWritable.get());
    }
}

8、数据清洗 ETL

package com.xiaojie.hadoop.mapreduce.etl;

import com.xiaojie.hadoop.mapreduce.outputformat.LogDriver;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WebLogDriver {
    public static void main(String[] args) throws Exception {

// 输入输出路径需要根据自己电脑上实际的输入输出路径设置
        args = new String[]{"D:\\hadoop\\weblog", "D:\\hadoop\\outlog"};

        // 1 获取job信息
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);

        // 2 加载jar包
        job.setJarByClass(LogDriver.class);

        // 3 关联map
        job.setMapperClass(WebLogMapper.class);

        // 4 设置最终输出类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(NullWritable.class);

        // 设置reducetask个数为0
        job.setNumReduceTasks(0);

        // 5 设置输入和输出路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        // 6 提交
        boolean b = job.waitForCompletion(true);
        System.exit(b ? 0 : 1);
    }
}
package com.xiaojie.hadoop.mapreduce.etl;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

/**
 * @author 熟透的蜗牛
 * @version 1.0
 * @description: 数据清洗,清洗掉不符合格式的数据
 * @date 2024/12/29 21:37
 */
public class WebLogMapper extends Mapper<LongWritable, Text, Text, NullWritable> {

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

        // 1 获取1行数据
        String line = value.toString();

        // 2 解析日志
        boolean result = parseLog(line, context);

        // 3 日志不合法退出
        if (!result) {
            return;
        }

        // 4 日志合法就直接写出
        context.write(value, NullWritable.get());
    }

    // 2 封装解析日志的方法
    private boolean parseLog(String line, Context context) {

        // 1 截取
        String[] fields = line.split(" ");

        // 2 日志长度大于11的为合法
        if (fields.length > 11) {
            return true;
        } else {
            return false;
        }
    }
}

五、数据压缩

1、参数说明

参数

默认值

阶段

建议

io.compression.codecs

(在core-site.xml中配置)

无,这个需要在命令行输入hadoop checknative查看

输入压缩

Hadoop使用文件扩展名判断是否支持某种编解码器

mapreduce.map.output.compress(在mapred-site.xml中配置)

false

mapper输出

这个参数设为true启用压缩

mapreduce.map.output.compress.codec(在mapred-site.xml中配置)

org.apache.hadoop.io.compress.DefaultCodec

mapper输出

企业多使用LZO或Snappy编解码器在此阶段压缩数据

mapreduce.output.fileoutputformat.compress(在mapred-site.xml中配置)

false

reducer输出

这个参数设为true启用压缩

mapreduce.output.fileoutputformat.compress.codec(在mapred-site.xml中配置)

org.apache.hadoop.io.compress.DefaultCodec

reducer输出

使用标准工具或者编解码器,如gzip和bzip2

2、代码示例

package com.xiaojie.hadoop.mapreduce.zip;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.BZip2Codec;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

/**
 * @author 熟透的蜗牛
 * @version 1.0
 * @description: TODO
 * @date 2024/12/27 9:23
 */
public class WordCountDriver {

    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {

        // 1 获取配置信息以及获取job对象
        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);

        // 2 关联本Driver程序的jar
        job.setJarByClass(WordCountDriver.class);
        // 3 关联Mapper和Reducer的jar
        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordCountReducer.class);

        // 4 设置Mapper输出的kv类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        // 5 设置最终输出kv类型

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);


        //设置压缩格式
        FileOutputFormat.setCompressOutput(job, true);

        // 设置压缩的方式
        FileOutputFormat.setOutputCompressorClass(job, BZip2Codec.class);

        // 6 设置输入和输出路径
        FileInputFormat.setInputPaths(job, new Path("D:\\hadoop\\hello.txt"));
        FileOutputFormat.setOutputPath(job, new Path("D:\\hadoop\\wordcount111"));

        // 7 提交job
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);

    }
}

六、完整代码

spring-boot: Springboot整合redis、消息中间件等相关代码 - Gitee.com

七、参考

https://blog.csdn.net/weixin_48935611/article/details/137856999

参考内容来自尚硅谷大数据学习

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/946809.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

从零开始学TiDB(7)TiDB 的MPP架构概述

MPP架构介绍&#xff1a; 如图&#xff0c;TiDB Server 作为协调者&#xff0c;首先 TiDB Server 会把每个TiFlash 拥有的region 会在TiFlash上做交换&#xff0c;让表连接在一个TiFlash上。另外 TiFlash会作为计算节点&#xff0c;每个TiFlash都负责数据交换&#xff0c;表连接…

接雨水-力扣热题100

题目&#xff1a; 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水。 示例 1&#xff1a; 输入&#xff1a;height [0,1,0,2,1,0,1,3,2,1,2,1]输出&#xff1a;6解释&#xff1a;上面是由数组 [0,1,0,2,1,…

AI大模型语音识别转文字

提取音频 本项目作用在于将常见的会议录音文件、各种语种音频文件进行转录成相应的文字&#xff0c;也可从特定视频中提取对应音频进行转录成文字保存在本地。最原始的从所给网址下载对应视频和音频进行处理。下载ffmpeg(https://www.gyan.dev/ffmpeg/builds/packages/ffmpeg-…

基于微信小程序的校园点餐平台的设计与实现(源码+SQL+LW+部署讲解)

文章目录 摘 要1. 第1章 选题背景及研究意义1.1 选题背景1.2 研究意义1.3 论文结构安排 2. 第2章 相关开发技术2.1 前端技术2.2 后端技术2.3 数据库技术 3. 第3章 可行性及需求分析3.1 可行性分析3.2 系统需求分析 4. 第4章 系统概要设计4.1 系统功能模块设计4.2 数据库设计 5.…

安卓入门十一 常用网络协议四

MQTT&#xff08;Message Queuing Telemetry Transport&#xff09; MQTT是一种轻量级的、发布/订阅模式的消息传输协议。它被设计用于在低带宽或不稳定网络环境下&#xff0c;实现物联网设备之间的可靠通信。 4.1 MQTT详细介绍 发布/订阅模式&#xff1a;MQTT 使用发布/订…

前端多个项目部署在同一个nginx下,前缀不同,配置编写方式

我们前端是微前端的项目&#xff0c;不同模块是分开的不同项目&#xff0c;用访问前缀区分。开发环境部署为了节约资源&#xff0c;直接使用一个nginx当做静态资源服务器&#xff0c;服务多个微前端&#xff0c;示意图如下&#xff1a; 下面是nginx使用的配置(server部分) ser…

Yolo11 基于DroneVehicle数据集的无人机视角下车辆目标检测

1、关于DroneVehicle数据集介绍 DroneVenicle数据集是由天津大学收集、标注的大型无人机航拍车辆数据集。 DroneVehicle 数据集由无人机采集的共 56,878 幅图像组成&#xff0c;其中一半为 RGB 图像&#xff0c;其余为红外图像。我们对五个类别进行了带有方向性边界框的丰富标…

Requests库01|使用Requests库发送 get/post/put/delete请求

学习目标&#xff1a; 能够使用Requests库发送 get/post/put/delete请求&#xff0c;获取响应状态码、数据能够使用UnitTest管理测试用例。 目录 一、Requests库安装和简介 二、设置http请求语法&#xff08;重要&#xff09; 三、应用案例&#xff08;重要&#xff09; …

[有用教程]从 Pixel 快速传输到 Android

概括 更换新手机很容易&#xff0c;但数据迁移却不容易。目前&#xff0c;用户喜欢转换品牌&#xff0c;应用市场上的转换工具也越来越多。然而&#xff0c;它们并不都是安全的。因此&#xff0c;选择一款简单、安全的迁移工具至关重要。 今天我们将讨论如何从 Pixel 转移到 …

【蓝桥杯研究生组】第15届Java试题答案整理

D 题 试题 D: 商品库存管理 时间限制: 3.0s 内存限制: 512.0MB 本题总分&#xff1a;10 分 【问题描述】 在库存管理系统中&#xff0c;跟踪和调节商品库存量是关键任务之一。小蓝经营的仓库中存有多种商品&#xff0c;这些商品根据类别和规格被有序地分类并编号&#xff0c;…

BUUCTF sqli-labs 1

这里就是单纯的找一下flag在哪&#xff0c;通关整个靶场在sql注入分区&#xff0c;虽然还没有通关。 这里要先看一下数据库都有哪些&#xff0c;用到语句&#xff1a;?id-1 union select 1,(select group_concat(schema_name) from information_schema.schemata),3-- 发现这个…

python实现自动登录12306抢票 -- selenium

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 python实现自动登录12306抢票 -- selenium 前言其实网上也出现了很多12306的代码&#xff0c;但是都不是最新的&#xff0c;我也是从网上找别人的帖子&#xff0c;看B站视频&…

Spring自动化创建脚本-解放繁琐的初始化配置!!!(自动化SSM整合)

一、实现功能(原创&#xff0c;转载请告知) 1.自动配置pom配置文件 2.自动识别数据库及数据表&#xff0c;创建Entity、Dao、Service、Controller等 3.自动创建database.properties、mybatis-config.xml等数据库文件 4.自动创建spring-dao.xml spring-mvc.xml …

[微服务] - MQ高级

在昨天的练习作业中&#xff0c;我们改造了余额支付功能&#xff0c;在支付成功后利用RabbitMQ通知交易服务&#xff0c;更新业务订单状态为已支付。 但是大家思考一下&#xff0c;如果这里MQ通知失败&#xff0c;支付服务中支付流水显示支付成功&#xff0c;而交易服务中的订单…

MySQL(面试题 - 同类型归纳面试题)

目录 一、MySQL 数据类型 1. 数据库存储日期格式时&#xff0c;如何考虑时区转换问题&#xff1f; 2. Blob和text有什么区别&#xff1f; 3. mysql里记录货币用什么字段类型比较好&#xff1f; 4. MySQL如何获取当前日期&#xff1f; 5. 你们数据库是否支持emoji表情存储…

aws(学习笔记第二十一课) 开发lambda应用程序

aws(学习笔记第二十一课) 开发lambda应用程序 学习内容&#xff1a; lambda的整体概念开发lambda应用程序 1. lambda的整体概念 借助AWS Lambda&#xff0c;无需预置或管理服务器即可运行代码。只需为使用的计算时间付费。借助 Lambda&#xff0c;可以为几乎任何类型的应用进…

【优选算法】查找总价格为目标值的两个商品

链接&#xff1a;LCR 179. 查找总价格为目标值的两个商品 - 力扣&#xff08;LeetCode&#xff09; 解法&#xff1a;利用单调性&#xff0c;使用双指针算法解决问题 1.先从小到大排序 2. sum > t : right--; sum < t : left; sum t : return class Solution {public…

VUE echarts 教程二 折线堆叠图

VUE echarts 教程一 折线图 import * as echarts from echarts;var chartDom document.getElementById(main); var myChart echarts.init(chartDom); var option {title: {text: Stacked Line},tooltip: {trigger: axis},legend: {data: [Email, Union Ads, Video Ads, Dir…

bilibili 哔哩哔哩小游戏SDK接入

小游戏的文档 简介 bilibili小游戏bilibili小游戏具有便捷、轻量、免安装的特点。游戏包由云端托管&#xff0c;在哔哩哔哩APP内投放和运行&#xff0c;体验流畅&#xff0c;安全可靠。https://miniapp.bilibili.com/small-game-doc/guide/intro/ 没想过接入这个sdk比ios还难…

2024年中国新能源汽车用车发展怎么样 PaperGPT(二)

用车趋势深入分析 接上文&#xff0c;2024年中国新能源汽车用车发展怎么样 PaperGPT&#xff08;一&#xff09;-CSDN博客本文将继续深入探讨新能源汽车的用车强度、充电行为以及充电设施的现状。 用车强度 月均行驶里程&#xff1a;2024年纯电车辆月均行驶超过1500公里&…