文章目录
- 介绍
- 激活函数
- 示例
- 损失函数
- 示例
- 卷积操作
- 示例
- 池化
- 示例
- 归一化操作
- 示例
- Dropout
- 示例
- torch.nn.functional 与 torch.nn 的区别
介绍
torch.nn.functional 是 PyTorch 中的一个模块,提供了许多函数式的神经网络操作,包括激活函数、损失函数、卷积操作等。这些函数是无状态的(stateless),与 torch.nn 中的模块化层(如 nn.ReLU、nn.Conv2d 等)不同,torch.nn.functional 提供的是直接的函数调用方式。
激活函数
torch.nn.functional 提供了许多常用的激活函数,例如 ReLU、Sigmoid、Tanh 等。
import torch.nn.functional as F
示例
import torch
import torch.nn.functional as F
x = torch.tensor([-1.0, 0.0, 1.0])
relu_output = F.relu(x) # ReLU 激活
softmax_output = F.softmax(x, dim=0) # Softmax 激活
print(relu_output) # tensor([0., 0., 1.])
print(softmax_output) # tensor([0.0900, 0.2447, 0.6652])
损失函数
torch.nn.functional 提供了许多损失函数,与 torch.nn 中的模块化损失函数(如 nn.CrossEntropyLoss)功能相同,但需要显式传入参数。
示例
input = torch.tensor([[0.5, 1.5], [2.0, 1.0]], requires_grad=True)
target = torch.tensor([1, 0])
loss = F.cross_entropy(input, target) # 交叉熵损失
print(loss) # tensor(1.2412, grad_fn=<NllLossBackward>)
卷积操作
torch.nn.functional 提供了卷积操作的函数式实现,例如 F.conv1d、F.conv2d、F.conv3d。
示例
input = torch.randn(1, 1, 5) # 输入:batch_size=1, channels=1, width=5
weight = torch.randn(1, 1, 3) # 卷积核:out_channels=1, in_channels=1, kernel_size=3
output = F.conv1d(input, weight)
print(output.shape) # torch.Size([1, 1, 3])
池化
torch.nn.functional 提供了池化操作的函数式实现,例如最大池化和平均池化。
示例
input = torch.tensor([[[[1.0, 2.0], [3.0, 4.0]]]]) # 输入:batch_size=1, channels=1, height=2, width=2
output = F.max_pool2d(input, kernel_size=2)
print(output) # tensor([[[[4.]]]])
归一化操作
torch.nn.functional 提供了归一化操作的函数式实现,例如 BatchNorm、LayerNorm 等。
示例
input = torch.randn(2, 3) # 输入:batch_size=2, features=3
output = F.layer_norm(input, normalized_shape=(3,))
print(output)
Dropout
torch.nn.functional 提供了 Dropout 的函数式实现。
示例
input = torch.tensor([1.0, 2.0, 3.0])
output = F.dropout(input, p=0.5, training=True) # 50% 概率随机置零
print(output)