C语言中的贪心算法

贪心算法(Greedy Algorithm)是一种在每一步选择中都采取当前最优解的算法,希望通过局部最优解的选择,最终得到全局最优解。它常用于解决最优化问题,如最小生成树、最短路径等。本文将从理论到实践,逐步引导初学者掌握贪心算法在 C 语言中的实现。


什么是贪心算法?

贪心算法的核心是 贪心选择性质最优子结构

  1. 贪心选择性质:每次选择当前看起来最优的解。
  2. 最优子结构:问题的最优解可以通过子问题的最优解合并得到。

举个例子:假如你需要用最少的硬币找零,每次选择最大面值的硬币就是贪心的思路。


贪心算法的适用场景

贪心算法并不总是能找到全局最优解,适用场景包括:

  • 最小生成树问题(如 Prim、Kruskal 算法)
  • 活动选择问题
  • 最短路径问题(如 Dijkstra 算法,虽然不是纯贪心,但核心思想类似)

贪心算法的实现步骤

以下是实现贪心算法的通用步骤:

  1. 分析问题是否满足贪心选择性质和最优子结构
  2. 排序:根据特定规则对问题的元素进行排序(通常需要一个比较函数)。
  3. 逐步选择:从头开始,选择符合条件的元素,直到满足目标。
  4. 验证结果:确保结果满足问题的要求。

示例:活动选择问题

问题描述

给定一组活动,每个活动有一个开始时间和结束时间。你需要选择尽可能多的活动,且这些活动之间不能重叠。

贪心思路
  1. 按活动的结束时间升序排序(结束得越早,留给后续活动的时间越多)。
  2. 依次选择每个活动,如果它的开始时间不早于上一个已选活动的结束时间,则选择它。

C语言实现

以下是活动选择问题的 C 语言实现代码:

#include <stdio.h>
#include <stdlib.h>

// 定义活动结构体
typedef struct {
    int start;
    int end;
} Activity;

// 比较函数,用于按结束时间排序
int compare(const void *a, const void *b) {
    Activity *activity1 = (Activity *)a;
    Activity *activity2 = (Activity *)b;
    return activity1->end - activity2->end;
}

// 贪心算法选择活动
void selectActivities(Activity activities[], int n) {
    // 按结束时间排序
    qsort(activities, n, sizeof(Activity), compare);

    printf("选择的活动如下:\n");
    int lastEndTime = 0;

    for (int i = 0; i < n; i++) {
        if (activities[i].start >= lastEndTime) {
            printf("活动[%d]: 开始时间 = %d, 结束时间 = %d\n", i + 1, activities[i].start, activities[i].end);
            lastEndTime = activities[i].end;
        }
    }
}

int main() {
    Activity activities[] = {
        {1, 3},
        {2, 5},
        {4, 6},
        {6, 7},
        {5, 9},
        {8, 9}
    };
    int n = sizeof(activities) / sizeof(activities[0]);

    selectActivities(activities, n);

    return 0;
}

代码分析

  1. 数据结构:用 struct 定义活动的开始和结束时间。
  2. 排序:用 qsort 对活动按结束时间升序排列。
  3. 贪心选择:逐一遍历排序后的活动,如果活动的开始时间不与上一次选择的活动冲突,就将其加入结果。

输入输出示例

输入活动:

  • 活动1:开始时间=1,结束时间=3
  • 活动2:开始时间=2,结束时间=5
  • 活动3:开始时间=4,结束时间=6
  • 活动4:开始时间=6,结束时间=7
  • 活动5:开始时间=5,结束时间=9
  • 活动6:开始时间=8,结束时间=9

输出活动:

选择的活动如下:
活动[1]: 开始时间 = 1, 结束时间 = 3
活动[3]: 开始时间 = 4, 结束时间 = 6
活动[4]: 开始时间 = 6, 结束时间 = 7
活动[6]: 开始时间 = 8, 结束时间 = 9

总结

  1. 贪心算法的核心是找到局部最优解,逐步逼近全局最优解。
  2. 关键在于分析问题是否适合贪心策略,排序规则是实现的基础。
  3. 通过活动选择问题,初学者可以掌握贪心算法的基本思想。

尝试多练习一些经典的贪心问题,如背包问题、最短路径问题等,你会发现贪心算法是一种高效且优雅的解决问题方法!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/945031.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MarkItDown的使用(将Word、Excel、PDF等转换为Markdown格式)

MarkItDown的使用&#xff08;将Word、Excel、PDF等转换为Markdown格式&#xff09; 本文目录&#xff1a; 零、时光宝盒&#x1f33b; 一、简介 二、安装 三、使用方法 3.1、使用命令行形式 3.2、用 Python 调用 四、总结 五、参考资料 零、时光宝盒&#x1f33b; &a…

akamai3.0 wizzair 网站 分析

声明: 本文章中所有内容仅供学习交流使用&#xff0c;不用于其他任何目的&#xff0c;抓包内容、敏感网址、数据接口等均已做脱敏处理&#xff0c;严禁用于商业用途和非法用途&#xff0c;否则由此产生的一切后果均与作者无关&#xff01; 有相关问题请第一时间头像私信联系我删…

kubernetes Gateway API-1-部署和基础配置

文章目录 1 部署2 最简单的 Gateway3 基于主机名和请求头4 重定向 Redirects4.1 HTTP-to-HTTPS 重定向4.2 路径重定向4.2.1 ReplaceFullPath 替换完整路径4.2.2 ReplacePrefixMatch 替换路径前缀5 重写 Rewrites5.1 重写 主机名5.2 重写 路径5.2.1 重新完整路径5.2.1 重新部分路…

likeAdmin架构部署(踩坑后的部署流程

1、gitee下载 https://gitee.com/likeadmin/likeadmin_java.git 自己克隆 2、项目注意 Maven&#xff1a;>3.8 ❤️.9 (最好不要3.9已经试过失败 node &#xff1a;node14 (不能是18 已经测试过包打不上去使用14的换源即可 JDK&#xff1a;JDK8 node 需要换源 npm c…

宠物行业的出路:在爱与陪伴中寻找增长新机遇

在当下的消费市场中&#xff0c;如果说有什么领域能够逆势而上&#xff0c;宠物行业无疑是一个亮点。当人们越来越注重生活品质和精神寄托时&#xff0c;宠物成为了许多人的重要伴侣。它们不仅仅是家庭的一员&#xff0c;更是情感的寄托和生活的调剂。然而&#xff0c;随着行业…

Java 堆排序原理 图文详解 代码逻辑

文章目录 1. 时间复杂度 & 空间复杂度2. 大顶堆、小顶堆3. 具体步骤 & 原理1. 判断是否满足堆的性质2. 维护堆的性质3. 交换位置 4. 代码实现 1. 时间复杂度 & 空间复杂度 时间复杂度: O(nlogn) 建堆时间复杂度: O(n) 排序时间复杂度: O(nlogn)空间复杂度: O(1) …

计算机网络|数据流向剖析与分层模型详解

文章目录 一、网络中的数据流向二、计算机网络通信模型1.OSI 模型2.TCP/IP 模型3.TCP/IP五层模型3.1 分层架构描述3.2各层地址结构3.3UDP数据包报头结构 三、总结 一、网络中的数据流向 在计算机网络中&#xff0c;数据的流向是指数据从发送端到接收端的传输路径。数据流向涉及…

ensp、HCL环境部署vm版

ensp、HCL环境部署vm版 前言部署环境vmware安装下载镜像创建虚拟机安装ensp、HCL创建快照 问题此平台不支持虚拟化的 AMD-V/rvi。 前言 因为我换了电脑&#xff0c;锐龙版的win11&#xff0c;我按照以前的思路去装软件&#xff0c;发现有很多问题&#xff0c;特别是跳hyper-v弹…

鸿蒙项目云捐助第二十九讲云捐助项目云数据库商品的批量增加功能实现

鸿蒙项目云捐助第二十九讲云捐助项目云数据库商品的批量增加功能实现 关于鸿蒙云捐助项目&#xff0c;前面的内容已使用云函数&#xff0c;云数据库分别实现云捐助项目首页中的项分类导航&#xff0c;底部导航&#xff0c;轮播图功能&#xff0c;这里继续实现云数据库加载捐赠…

【LeetCode: 83. 删除排序链表中的重复元素 + 链表】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…

Spring源码_05_IOC容器启动细节

前面几章&#xff0c;大致讲了Spring的IOC容器的大致过程和原理&#xff0c;以及重要的容器和beanFactory的继承关系&#xff0c;为后续这些细节挖掘提供一点理解基础。掌握总体脉络是必要的&#xff0c;接下来的每一章都是从总体脉络中&#xff0c; 去研究之前没看的一些重要…

2024-12-29-sklearn学习(25)无监督学习-神经网络模型(无监督) 烟笼寒水月笼沙,夜泊秦淮近酒家。

文章目录 sklearn学习(25) 无监督学习-神经网络模型&#xff08;无监督&#xff09;25.1 限制波尔兹曼机25.1.1 图形模型和参数化25.1.2 伯努利限制玻尔兹曼机25.1.3 随机最大似然学习 sklearn学习(25) 无监督学习-神经网络模型&#xff08;无监督&#xff09; 文章参考网站&a…

BUG分析 - 重启有时失败

1. 倒查版本 1.0_11 - ok1.0_12 - fail 2.对比1.0_11和1.0_12 失败时的日志 ================================== 1.0_11 ============================== 2024-12-26 09:46:51.886 INFO [26332] [ThreadPLCPool::in

git注意事项

提交代码的备注 feat : 开发 新增功能 fix: 修复 git相关 1. git安装及全局用户设置 Git安装 npm install git -ggit修改用户名邮箱密码 git config --global --replace-all user.name "要修改的用户名" git config --global --replace-all user.email"要修改…

LeetCode每日三题(六)数组

一、最大子数组和 自己答案&#xff1a; class Solution {public int maxSubArray(int[] nums) {int begin0;int end0;if(numsnull){//如果数组非空return 0;}else if(nums.length1){//如果数组只有一个元素return nums[0];}//初值选为数组的第一个值int resultnums[0];int i…

一个通用的居于 OAuth2的API集成方案

在现代 web 应用程序中&#xff0c;OAuth 协议是授权和认证的主流选择。为了与多个授权提供商进行无缝对接&#xff0c;我们需要一个易于扩展和维护的 OAuth 解决方案。本文将介绍如何构建一个灵活的、支持多提供商的 OAuth 系统&#xff0c;包括动态 API 调用、路径参数替换、…

小程序配置文件 —— 15 页面配置

页面配置 小程序的页面配置&#xff0c;也称为局部配置&#xff0c;每一个小程序页面也可以使用自己的 .json 文件来对页面的窗口表现进行配置&#xff1b; 需要注意的是&#xff1a;页面配置文件的属性和全局配置文件中的 window 属性几乎一致&#xff0c;只不过这里不需要额…

【从零开始入门unity游戏开发之——C#篇37】进程、线程和C# 中实现多线程有多种方案

文章目录 进程、线程和C#多线程一、进程的基本概念二、线程的基本概念三、C#中的多线程1、为什么需要多线程&#xff1f;2、*C# 中如何实现多线程**2.1 **使用 Thread 类**&#xff08;1&#xff09;示例&#xff08;2&#xff09;线程休眠&#xff08;3&#xff09;设置为后台…

评分模型在路网通勤习惯分析中的应用——提出问题(1)

1、问题的由来、目标和意义 最近一段时间和公司其它业务部门讨论时&#xff0c;发现一个有趣的交通路网问题&#xff0c;车辆从S点行驶到V点共用时40分钟&#xff0c;这段时间内路网中的卡口摄像头识别到了车辆通过的信息。如下图所示&#xff1a; 设计师需要通过这些有限的路…

机器学习DAY7: 特征工程和特征选择(数据预处理)(完)

本文通过特征提取、特征转换、特征选择三个过程介绍数据预处理方法&#xff0c;特征提取将原始数据转换为适合建模的特征&#xff0c;特征转换将数据进行变换以提高算法的准确性&#xff0c;特征选择用来删除无用的特征。 知识点 特征提取特征转换特征选择 本次实验的一些示…