最新高性能多目标优化算法:多目标麋鹿优化算法(MOEHO)求解LRMOP1-LRMOP6及工程应用---盘式制动器设计,提供完整MATLAB代码

一、麋鹿优化算法

麋鹿优化算法(Elephant Herding Optimization,EHO)是2024年提出的一种启发式优化算法,该算法的灵感来源于麋鹿群的繁殖过程,包括发情期和产犊期。在发情期,麋鹿群根据公麋鹿之间的争斗分为不同大小的家族,较强的公麋鹿可以与大量的雌麋鹿组成家族。在产犊期,每个家族的公麋鹿和雌麋鹿繁殖新的幼崽。在优化过程中,优化循环由发情期、产犊期和选择期三个阶段组成。在选择期,所有家族合并,选择最适应的麋鹿群用于下一轮的发情期和产犊期。EHO 将种群分为一组组的群体,每个群体在发情期有一个领导者和若干跟随者,跟随者的数量根据领导者的适应度值确定。在产犊期,每个群体根据领导者和跟随者生成新的解。在选择期,所有群体的成员包括领导者、跟随者和新解被合并,选择最适应的种群。
在这里插入图片描述

参考文献:
[1] Al-betar, M.A., Awadallah, M.A., Braik, M.S., Makhadmeh, S.N., & Abu Doush, I. (2024). Elk herd optimizer: a novel nature-inspired metaheuristic algorithm. Artif. Intell. Rev., 57, 48.

二、多目标麋鹿优化算法

针对单目标优化问题,麋鹿优化算法已显示出其有效性。然而,在面对多目标优化问题时,需要一种能够同时处理多个冲突目标的算法。因此,本文提出多目标麋鹿优化算法(Multi-objective Elephant Herding Optimization,MOEHO)。MOEHO是麋鹿优化算法的多目标扩展,它能够有效地解决多目标优化问题。

为了评估MOEHO的性能,我们将其应用于一组标准的基准测试函数,这组函数包括LRMOP1-LRMOP6及工程应用—盘式制动器设计。这些函数在测试多目标优化算法的效率方面被广泛采用。此外,为了全面评估算法的收敛性和解的多样性,我们使用了六种不同的性能度量指标:GD、IGD、HV、Spacing、Spread和Coverage。通过这些指标的综合分析,我们可以有效地评估该算法在处理多目标优化问题时的整体性能。
盘式制动器设计的数学模型如下:
在这里插入图片描述

MOEHO算法的执行步骤可以描述如下:
在这里插入图片描述

  1. 初始种群的生成:算法首先随机生成一个初始种群,其中每个个体象征着一个可能的解决方案。

  2. 个体的评估与筛选:算法对初始种群中的个体进行评估,并根据特定的标准筛选出合适的个体。

  3. 新个体的产生:通过配对操作,从筛选后的个体中生成新的子代个体。

  4. 环境选择过程:算法通过环境选择机制对新产生的子代个体进行评估,以确定哪些个体将进入下一代。

  5. 终止条件的判断:算法会持续进行迭代,直到满足预设的终止条件,这些条件可能包括达到最大迭代次数或解决方案的质量达到既定标准。

  6. 近似Pareto解集的形成:当满足终止条件后,最后一次环境选择中保留的个体将构成近似的Pareto解集。

在这一过程中,环境选择机制扮演着至关重要的角色。它负责从子代个体中挑选出能够支配其他个体或与其他个体互不支配的精英个体。这些精英个体代表了当前种群中的最优质解。随着算法的不断迭代,每次迭代都能选出新的精英个体,最终能够逼近问题的最优解。

2.1、六种性能评价指标介绍

  1. GD(Generational Distance)世代距离
    GD指标用于评价获得的帕累托前沿(PF)和最优帕累托前沿之间的距离。对于每个属于PF的解,找到与其最近的最优帕累托前沿中的解,计算其欧式距离,GD为这些最短欧式距离的平均值。GD值越小,代表收敛性越好,找到的PF与最优帕累托前沿越接近。

  2. IGD(Inverted Generational Distance)逆世代距离
    IGD与GD相似,但同时考虑了多样性和收敛性。对于真实的最优帕累托前沿中的每个解,找到与其最近的PF中的解,计算其欧式距离,取平均值而不需开方。如果PF的数量大于最优帕累托前沿的数量,那么IGD就能最完整地表达PF的性能,IGD值越小,代表算法多样性和收敛性越好。

  3. HV(Hypervolume)超体积
    HV也称为S metric,用于评价目标空间被一个近似集覆盖的程度,是最为普遍的一种评价指标。需要用到一个参考点,HV值为PF与参考点之间组成的超立方体的体积。HV的比较不需要先验知识,不需要找到真实的帕累托前沿。如果某个近似集A完全支配另一个近似集B,那么A的超容量HV会大于B,因此HV完全可以用于Pareto比较。

  4. Spacing
    Spacing是衡量算法生成的非支配解集中各个解之间平均距离的指标。Spacing值越小,表示解集内部的解越密集,多样性越高。

  5. Spread
    Spread指标衡量算法生成的非支配解集在Pareto前沿上的分散程度。高的Spread值意味着解集在前沿上分布得更均匀,没有聚集在某个区域。

  6. Coverage
    Coverage指标衡量一个算法生成的Pareto前沿覆盖另一个算法生成的Pareto前沿的比例。如果算法A的Coverage指标高于算法B,那么意味着算法A生成的Pareto前沿在某种程度上包含了算法B生成的Pareto前沿。

2.2、部分MATLAB代码

%% 参数说明
%testProblem 测试问题序号
%Name 测试问题名称
%dim 测试问题维度
%numObj测试问题目标函数个数
%lb测试问题下界
%ub测试问题上界
%SearchAgents_no 种群大小
%Max_iter最大迭代次数
%Fbest 算法求得的POF
%Xbest 算法求得的POS
%TurePF 测试问题的真实pareto前沿
%Result 评价指标随迭代次数的变化值
testProblem=2;
[Name,dim,numObj,lb,ub]=GetProblemInfo(testProblem);%获取测试问题的相关信息
SearchAgents_no=200;%种群大小 
Max_iter=200;%最大迭代次数
[Fbest,Xbest,TurePF,Result] = MOEHO(Max_iter,SearchAgents_no,Name,dim,numObj,lb,ub);%算法求解

2.3、部分结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、完整MATLAB代码

见下方名片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/944005.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

自动驾驶3D目标检测综述(六)

停更了好久终于回来了(其实是因为博主去备考期末了hh) 这一篇接着(五)的第七章开始讲述第八章的内容。第八章主要介绍的是三维目标检测的高效标签。 目录 第八章 三维目标检测高效标签 一、域适应 (一)…

使用three.js 实现vr全景图展示,复制即可用

1.实现效果 2.代码 1.npm安装three.js npm install three 2.引入three.js import * as THREE from three import { OrbitControls } from three/examples/jsm/controls/OrbitControls 3.初始化模型 init(val) {this.container document.querySelector(.container)// 初始…

【Java 数据结构】LinkedList 类 和 模拟实现链表

🔥博客主页🔥:【 坊钰_CSDN博客 】 欢迎各位点赞👍评论✍收藏⭐ 目录 1. 什么是 LinkedList ? 2 LinkedList 的使用 2.1 LinkedList 的构造 2.2 LinkedList 的常用方法 2.3 LinkedList 的遍历 3. 单链表的模拟实现…

修改vue-element-admin,如何连接我们的后端

改哪几个文件就可以连接我们后端 ​​​​​​​ 主要就这四个 main.js,屏蔽这个或者删除 vue-config 最后两个文件改下端口即可 这样基本就能发了,但是还要改下 改成api 然后还要修改request.js 这里改成我们返回的状态码 我讲一个东西很容易就懂了&…

为什么在Cloudflare域名绑定添加DNS后,域名+端口无法访问?(Cloudflare域名+端口无法访问的问题详解)

文章目录 📖 介绍 📖🏡 演示环境 🏡📒 Cloudflare 域名+端口无法访问 📒📝 问题示例📝 出现原因分析🔍 1. Cloudflare 的代理工作原理🔍 2. 问题核心📝 解决方案🎯 方法 1🎯 方法 2🎯 方法 3🎯 方法 4(推荐)🔖 配置示例⚓️ 相关链接 ⚓️�…

VS2022 中的 /MT /MTd /MD /MDd 选项

我们有时编译时,需要配置这个 运行库,指定C/C++运行时库的链接方式。 如下图 那么这些选项的含义是什么? /MT:静态链接多线程库 /MT选项代表“Multi-threaded Static”,即多线程静态库。选择此选项时,编译器会从运行时库中选择多线程静态连接库来解释程序中的代码,…

【NODE】01-fs和path常用知识点

前言 最近在使用express-generator知识进行搭建前后端通信,其中有些知识点涉及到nodejs的fs和path核心模块,因此另写一篇文章进行介绍和代码案例练习。 fs(文件系统)和 path 是 Node.js 的核心模块,用于文件操作和路径…

c++编译过程初识

编译过程 预处理:主要是执行一些预处理指令,主要是#开头的代码,如#include 的头文件、#define 定义的宏常量、#ifdef #ifndef #endif等条件编译的代码,具体包括查找头文件、进行宏替换、根据条件编译等操作。 g -E example.cpp -…

碰一碰发视频后端源码技术开发详解,支持OEM

一、引言 碰一碰发视频作为一种新颖的交互方式,在前端为用户带来便捷体验的同时,后端技术起着至关重要的支撑作用。后端负责管理视频资源、处理 NFC 标签信息与视频的关联逻辑、用户数据的存储与分析以及与前端的高效通信,确保整个系统稳定、…

HarmonyOS NEXT 实战之元服务:静态案例效果---本地特色景色

背景: 前几篇学习了元服务,后面几期就让我们开发简单的元服务吧,里面丰富的内容大家自己加,本期案例 仅供参考 先上本期效果图 ,里面图片自行替换 效果图1完整代码案例如下: import { authentication } …

面试场景题系列:设计一致性哈希系统

为了实现横向扩展,在服务器之间高效和均匀地分配请求/数据是很重要的。一致性哈希是为了达成这个目标而被广泛使用的技术。首先,我们看一下什么是重新哈希问题。 1 重新哈希的问题 如果你有n个缓存服务器,常见的平衡负载的方法是使用如下哈希…

SqlSugar配置连接达梦数据库集群

安装达梦数据库时,会自动在当前操作系统中创建dm_svc.conf文件,可以在其中配置集群信息,不同操作系统下的文件位置如下图所示:   dm_svc.conf文件内的数据分为全局配置区域、服务配置区域,以参考文献1中的示例说明&…

scss配置全局变量报错[sass] Can‘t find stylesheet to import.

路径没有错误,使用别名即可 后又提示Deprecation Warning: Sass import rules are deprecated and will be removed in Dart Sass 3.0.0. 将import改为use 使用时在$前添加全局变量所在文件,即variable.

UGUI源码分析 --- UI的更新入口

首先所有的UI组件都是添加到画布(Canvas)显示的,所以首先要从Canvas入手,通过搜索脚本函数以及使用Profiler查看UI的函数的执行,定位到了willRenderCanvases函数 打开UI的文件夹, 通过搜索willRenderCanvas…

音视频入门知识(二)、图像篇

⭐二、图像篇 视频基本要素:宽、高、帧率、编码方式、码率、分辨率 ​ 其中码率的计算:码率(kbps)=文件大小(KB)*8/时间(秒),即码率和视频文件大小成正比 YUV和RGB可相互转换 ★YUV(原始数据&am…

电脑配置maven-3.6.1版本

不要使用太高的版本。 apache-maven-3.6.1-bin.zip 下载这个的maven压缩包 使用3.6.1版本。 解压缩放在本地软甲目录下面: 配置系统环境变量 在系统环境下面配置MAVEN_HOME 点击path 新增一条 在cmd中输入 mvn -v 检查maven的版本 配置阿里云镜像和本地的仓库 …

Python基础语法知识——数据类型的查询、数据类型转化

今天第一次学习python,之前学习过C,感觉学习起来还可以,就是刚用的时候有点手残,想的是python代码,结果写出来就是C,本人决定每天抽出时间写点。同时继续更新NX二次开发专栏学习,话不多说,晚上的…

Boost之log日志使用

不讲理论,直接上在程序中可用代码: 一、引入Boost模块 开发环境:Visual Studio 2017 Boost库版本:1.68.0 安装方式:Nuget 安装命令: #只安装下面几个即可 Install-package boost -version 1.68.0 Install…

C语言初阶习题【17】求N的阶乘( 递归和非递归实现)

1.题目 2.分析 非递归 需要用到循环,n个数就是循环n次,每次和之前的乘起来 例如 5的阶乘 就是 5*4 *3 *2 *1 循环1到5 。需要一个变量来接收每次的结果 注意这个地方是乘,所以要从1 开始,sum 也需要是1而不是0 for(i 1&#xf…

云效流水线自动化部署web静态网站

云效流水线部署静态网站 背景新建流水线配置流水线运行流水线总结 背景 配置流水线以前,每次更新导航网站都要登进去宝塔后台,删掉旧的目录和文件,再上传最新的文件,太麻烦啦 网上的博客基本都是分享vue项目,这一篇是…