YOLO11改进-注意力-引入自调制特征聚合模块SMFA

        本篇文章将介绍一个新的改进机制——SMFA(自调制特征聚合模块),并阐述如何将其应用于YOLOv11中,显著提升模型性能。随着深度学习在计算机视觉中的不断进展,目标检测任务也在快速发展。YOLO系列模型(You Only Look Once)一直因其高效和快速而备受关注。然而,尽管YOLOv11在检测精度和速度上有显著提升,但在处理复杂背景或需要捕捉更多局部和全局信息时,仍然面临挑战。为此,我们引入了SMFA,通过提取图像中的全局结构和细节来进一步提高YOLOv11的性能,尤其在识别小物体或复杂背景物体时表现突出。

首先,我们将解析SMFA的工作原理,它通过EASA分支和LDE分支捕获非局部信息和局部细节,协同建模图像的全局结构与局部细节。随后,我们会详细说明如何将该模块与YOLOv11相结合,展示代码实现细节及其使用方法,最终展现这一改进对目标检测效果的积极影响。

YOLOv11原模型
改进后的模型

1. Self-Modulation Feature Aggregation(SMFA)结构介绍       

        SMFA(自调制特征聚合模块): SMFA模块用于协同建模局部和非局部信息,它分为两个分支:一个是EASA(Efficient Approximation of Self-Attention,简化的自注意力分支),用于捕获非局部信息;另一个是LDE(Local Detail Estimation,局部细节估计分支),用于捕获局部细节。EASA通过对输入特征进行下采样,然后利用全局特征的方差进行调制,再与原始特征进行聚合,提取非局部结构信息。LDE分支则通过卷积操作提取输入特征中的高频局部信息。这种设计可以有效捕获图像的全局和局部细节,从而提升图像中的全局结构和细节。

2. YOLOv11与SMFA的结合   

1. 在backbone中引用:在YOLOv11的骨干网络中,可以将SMFA模块引入SPPF模块之前,。这样,网络不仅能够从输入图像中提取局部细节信息,还可以同时捕获图像的全局信息。这种局部与全局信息的结合能够大幅提升YOLOv11对目标物体的识别能力。

2. 在C3k2中使用SMFA模块:C3k2模块是一种改进的卷积层结构,用于增强特征提取的能力。本文将SMFA插入到C3k2模块中,增强全局和局部信息。

3. Self-Modulation Feature Aggregation(SMFA)代码部分

YOLOv8_improve/YOLOv11.md at master · tgf123/YOLOv8_improve
YOLO11全部代码

 4. 将SMFA引入到YOLOv11中

第一: 将下面的核心代码复制到D:\bilibili\model\YOLO11\ultralytics-main\ultralytics\nn路径下,如下图所示。

第二:在task.py中导入SMFA包

第三:在task.py中的模型配置部分下面代码

第二个改进 

第一个改进,在SPPF模块之前添加

第四:将模型配置文件复制到YOLOV11.YAMY文件中

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SMFA, []]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 14], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 11], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)

  - [[17, 20, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)


# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2_SMFA, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2_SMFA, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2_SMFA, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2_SMFA, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2_SMFA, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2_SMFA, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2_SMFA, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2_SMFA, [1024, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)


第五:运行成功


from ultralytics.models import NAS, RTDETR, SAM, YOLO, FastSAM, YOLOWorld

if __name__=="__main__":


    # 使用自己的YOLOv11.yamy文件搭建模型并加载预训练权重训练模型
    model = YOLO(r"D:\bilibili\model\YOLO11\ultralytics-main\ultralytics\cfg\models\11\yolo11_SMFA.yaml")\
        .load(r'D:\bilibili\model\YOLO11\ultralytics-main\yolo11n.pt')  # build from YAML and transfer weights

    results = model.train(data=r'D:\bilibili\model\ultralytics-main\ultralytics\cfg\datasets\VOC_my.yaml',
                          epochs=100, imgsz=640, batch=8)



 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/943370.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

js-000000000000

1、js书写的位置 - 内部 <body> <!-- 习惯把 js 放到 /body 的后面 --> <script> console.log(这是内部 js 的书写位置) alert(内部js) </script> </body> <body><!-- 习惯把 js 放到 /body 的后面 --><script>console.log(这…

Android笔记(四十):ViewPager2嵌套RecyclerView滑动冲突进一步解决

背景 ViewPager2内嵌套横向滑动的RecyclerView&#xff0c;会有滑动冲突的情况&#xff0c;引入官方提供的NestedScrollableHost类可以解决冲突问题&#xff0c;但是有一些瑕疵&#xff0c;滑动横向RecyclerView到顶部&#xff0c;按住它不放手继续往左拖再往右拖&#xff0c;这…

Taro小程序开发性能优化实践

我们团队在利用Taro进行秒送频道小程序的同时&#xff0c;一直在探索性能优化的最佳实践。随着需求的不断迭代&#xff0c;项目中的性能问题难免日积月累&#xff0c;逐渐暴露出来影响用户体验。适逢双十一大促&#xff0c;我们趁着这个机会统一进行了Taro性能优化实践&#xf…

jangow-01-1.0.1靶机

靶机 ip&#xff1a;192.168.152.155 把靶机的网络模式调成和攻击机kali一样的网络模式&#xff0c;我的kali是NAT模式, 在系统启动时(长按shift键)直到显示以下界面 ,我们选第二个&#xff0c;按回车。 继续选择第二个&#xff0c;这次按 e 进入编辑页面 接下来&#xff0c;…

03.HTTPS的实现原理-HTTPS的工作流程

03.HTTPS的实现原理-HTTPS的工作流程 简介1. HTTPS的工作流程1.1. TCP的工作流程1.1.1. 三次握手的详细步骤1.1.2. 三次握手的作用 1.2. HTTPS的工作流程1.2.1. HTTPS与TCP的关系1.2.2. HTTPS的工作流程 2. 公钥和私钥的作用3. 对称密钥的生成和交换4. 对称加密和非对称加密的区…

阿里云人工智能ACA(五)——深度学习基础

一、深度学习概述 1. 深度学习概念 1-1. 深度学习基本概念 深度学习是机器学习的一个分支基于人工神经网络&#xff08;模仿人脑结构&#xff09;通过多层网络自动学习特征能够处理复杂的模式识别问题 1-2. 深度学习的优点与缺点 优点 强大的特征学习能力可以处理复杂问题…

MySQL和HBase的对比

Mysql &#xff1a;关系型数据库&#xff0c;主要面向 OLTP &#xff0c;支持事务&#xff0c;支持二级索引&#xff0c;支持 sql &#xff0c;支持主从、 Group Replication 架构模型&#xff08;此处以 Innodb 为例&#xff0c;不涉及别的存储引擎&#xff09;。 HBase &am…

Ftrans数据摆渡系统 搭建安全便捷跨网文件传输通道

一、专业数据摆渡系统对企业的意义 专业的数据摆渡系统对企业具有重要意义&#xff0c;主要体现在以下几个方面‌&#xff1a; 1、‌数据安全性‌&#xff1a;数据摆渡系统通过加密传输、访问控制和审计日志等功能&#xff0c;确保数据在传输和存储过程中的安全性。 2、‌高…

FPGA的DMA应用——pcileech

硬件通过pcie总线&#xff0c;访存本机的内存&#xff0c;并进行修改&#xff0c;可以进行很多操作。 学习视频&#xff1a;乱讲DMA及TLP 1-pcileech项目简介和自定义模块介绍_哔哩哔哩_bilibili vivado2024.1的下载文章链接和地址&#xff1a;AMD-Xilinx Vivado™ 2024.1 现…

未来网络技术的新征程:5G、物联网与边缘计算(10/10)

一、5G 网络&#xff1a;引领未来通信新潮流 &#xff08;一&#xff09;5G 网络的特点 高速率&#xff1a;5G 依托良好技术架构&#xff0c;提供更高的网络速度&#xff0c;峰值要求不低于 20Gb/s&#xff0c;下载速度最高达 10Gbps。相比 4G 网络&#xff0c;5G 的基站速度…

一种寻路的应用

应用背景 利用长途车进行货物转运的寻路计算。例如从深圳到大连。可以走有很多条长途车的路线。需要根据需求计算出最合适路线。不同的路线的总里程数、总价、需要的时间不一样。客户根据需求进行选择。主要有一些细节&#xff1a; 全国的长途车车站的数据的更新&#xff1a; …

STL格式转换为GLTF格式

STL与GLTF格式简介 STL格式 STL&#xff08;Stereo Lithography&#xff09;文件是一种广泛使用的3D打印文件格式&#xff0c;由3D Systems公司开发。它主要用于存储三维物体的几何信息&#xff0c;常用于立体光刻等3D打印技术。STL文件通常只包含物体的表面几何形状&#xf…

DevOps实战:用Kubernetes和Argo打造自动化CI/CD流程(1)

DevOps实战&#xff1a;用Kubernetes和Argo打造自动化CI/CD流程&#xff08;1&#xff09; 架构 架构图 本设计方案的目标是在一台阿里云ECS服务器上搭建一个轻量级的Kubernetes服务k3s节点&#xff0c;并基于Argo搭建一套完整的DevOps CI/CD服务平台&#xff0c;包括Argo CD…

数据结构经典算法总复习(下卷)

第五章:树和二叉树 先序遍历二叉树的非递归算法。 void PreOrderTraverse(BiTree T, void (*Visit)(TElemType)) {//表示用于查找的函数的指针Stack S; BiTree p T;InitStack(S);//S模拟工作栈while (p || !StackEmpty(S)) {//S为空且下一个结点为空&#xff0c;意味着结束遍…

前端知识补充—CSS

CSS介绍 什么是CSS CSS(Cascading Style Sheet)&#xff0c;层叠样式表, ⽤于控制⻚⾯的样式 CSS 能够对⽹⻚中元素位置的排版进⾏像素级精确控制, 实现美化⻚⾯的效果. 能够做到⻚⾯的样式和结构分离 基本语法规范 选择器 {⼀条/N条声明} 1&#xff09;选择器决定针对谁修改…

Spring Security 6 系列之九 - 集成JWT

之所以想写这一系列&#xff0c;是因为之前工作过程中使用Spring Security&#xff0c;但当时基于spring-boot 2.3.x&#xff0c;其默认的Spring Security是5.3.x。之后新项目升级到了spring-boot 3.3.0&#xff0c;结果一看Spring Security也升级为6.3.0&#xff0c;关键是其风…

【Go】context标准库

文章目录 1. 概述1.1 什么是 Context1.2 设计原理1.3 使用场景1.4 Context 分类核心:Context接口2. 源码解读4个实现emptyCtxTODO 和 BackgroundcancelCtxWithCancelcancelCtx.propagateCancel 构建父子关联parentCancelCtx 获取父上下文中的内嵌cancelCtxcanceltimerCtxWithT…

Windows和Linux安全配置和加固

一.A模块基础设施设置/安全加固 A-1.登录加固 1.密码策略 a.最小密码长度不少于8个字符&#xff0c;将密码长度最小值的属性配置界面截图。 练习用的WindowsServer2008,系统左下角开始 > 管理工具 > 本地安全策略 > 账户策略 > 密码策略 > 密码最小长度&#…

webrtc-internals调试工具

Google 的 Chrome&#xff08;87 或更高版本&#xff09;WebRTC 内部工具是一套内置于 Chrome 浏览器中的调试工具; webrtc-internals 能够查看有关视频和音频轨道、使用的编解码器以及流的一般质量的详细信息。这些知识对于解决音频和视频质量差的问题非常有帮助。 webrtc-int…

MT6765核心板_MTK6765安卓核心板规格参数_联发科MTK模块开发

MTK6765安卓核心板是基于联发科高效八核处理器平台开发的一款强大硬件解决方案。这款核心板的核心是采用12纳米工艺打造的MTK6765 CPU&#xff0c;具备四个主频高达2.3GHz的CORTEX-A53核心和四个主频为1.8GHz的CORTEX-A53核心&#xff0c;提供了卓越的处理性能。用户可以根据需…