阿里云人工智能ACA(五)——深度学习基础

一、深度学习概述

1. 深度学习概念

1-1. 深度学习基本概念
  • 深度学习是机器学习的一个分支
  • 基于人工神经网络(模仿人脑结构)
  • 通过多层网络自动学习特征
  • 能够处理复杂的模式识别问题
1-2. 深度学习的优点与缺点

优点

  • 强大的特征学习能力
  • 可以处理复杂问题
  • 准确率高
  • 自动化程度高

缺点

  • 需要大量数据
  • 计算资源要求高
  • 训练时间长
  • 可解释性差
1-3. 深度学习与传统机器学习区别

主要区别在于:传统机器学习是人工进行特征提取,深度学习是通过神经网络从数据里提取特征。

对比维度机器学习深度学习
特征提取

• 需要人工设计特征

• 依赖领域专家经验

• 特征工程占据大量工作

• 自动学习特征

• 端到端学习

• 减少人工干预

举例说明

图像识别猫:

• 人工定义特征:耳朵形状、胡须特征等

• 手动提取这些特征

• 基于提取的特征进行分类

图像识别猫:

• 直接输入原始图像

• 网络自动学习关键特征

• 自动完成特征提取到分类的全过程

数据要求

• 数据量要求相对较小

• 可以处理结构化数据

• 需要大量数据

• 特别适合非结构化数据

计算复杂度

• 计算量较小

• 训练速度快

• 计算量大

• 训练周期长

2. 深度学习框架

2-1 深度学习框架定义

深度学习框架是一个软件库,提供了构建、训练和部署深度学习模型所需的工具和接口。它是连接理论与实践的桥梁,使开发者能够更高效地实现深度学习算法。

2-2 TensorFlow框架

利用数据流图进行数值计算的开源软件库;

可以在众多异构的系统上方便移植;

2-3 Torch 框架

很好的学习RNN途径

2-4 PyTorch 框架

2-5 Caffe框架

2-6 框架的选择
特点TensorFlowTorchPyTorchCaffe
开发公司/组织谷歌 (Google)Facebook 人工智能研究院 (FAIR)Facebook 人工智能研究院 (FAIR)伯克利 AI 研究中心 (BAIR)
首次发布2015年2002年(Lua Torch)2016年2014年
编程语言Python、C++、Java、Go 等LuaPython、C++C++
模型构建方式静态计算图(TF 1.x),动态计算图(Eager Execution, TF 2.x)动态计算图动态计算图静态计算图
易用性中等,使用 Keras 可以简化模型构建较低,基于 Lua 语言,学习曲线较陡峭高,API 简洁直观,易于调试中等,模型定义需编写配置文件
性能高,支持 GPU 和 TPU,加上分布式训练中等,性能依赖于 Lua 的效率高,优化良好的动态计算图,支持 GPU 和分布式训练高,专注于图像处理任务,优化良好
生态系统丰富,包含 TensorFlow Hub、TensorFlow Lite、TensorFlow.js 等较小,社区活跃度不及 PyTorch 和 TensorFlow丰富,包含 TorchVision、TorchText、TorchServe 等较小,主要集中在视觉任务
社区和支持广泛的社区支持,丰富的文档和教程社区较小,主要集中在研究人员和特定领域活跃且快速增长的社区,丰富的第三方资源社区规模较小,主要用于特定应用场景
应用领域广泛,涵盖计算机视觉、自然语言处理、强化学习等主要用于计算机视觉和自然语言处理广泛,涵盖研究和生产环境中的各种应用主要集中在计算机视觉领域
调试和可视化工具TensorBoard 提供强大的可视化支持限制较多,缺乏统一的可视化工具支持通过第三方工具如 TensorBoardX 进行可视化基本的可视化工具,功能有限
移动和嵌入式支持TensorFlow Lite 提供优秀的支持支持有限,主要依赖第三方集成支持通过 PyTorch Mobile支持通过 Caffe2(现已合并入 PyTorch)
学习资源丰富的官方教程、文档和在线课程Lua 资源相对较少,需依赖社区贡献丰富的官方教程、文档和社区资源资源较少,主要依赖官方文档和社区贡献
扩展性高,支持自定义操作和模块高,基于 Lua 可灵活扩展高,易于定义自定义层和模块中等,扩展需通过配置文件进行

3 神经网络

3-1 神经网络基础

3-2 神经网络租车

4. 激活函数

4-1 激活函数定义:
  • 激活函数是一种在人工智能神经网络的神经单元桑运行的函数
  • 激活函数是神经网络中引入非线性变换的数学函数
  • 旨在帮助网络学习数据中的复杂模式
  • 负责将神经元节点的输入映射到输出端。
  • 用于决定神经元是否应该被激活。
4-2 常见激活函数:
Sigmoid激活函数

ReLU

Tanh

4-3 sigmoid激活函数
 4-4 Tanh激活函数
 4-5 ReLU激活函数

二、多层感知机

1. 感知机概述

2. 多层感知机

2-1 多层感知机概述

多层感知机是一种前馈神经网络,是最基础和经典的深度学习模型之一。

多层感知机由三类层构成:

  • 输入层:接收原始数据
  • 隐藏层:可以有一层或多层,负责特征提取和转换
  • 输出层:产生最终预测结果

多层感知机主要特点:

  • 每层神经元都与下一层全连接
  • 使用非线性激活函数(如ReLU、sigmoid等)
  • 通过反向传播算法训练
  • 可以用于分类和回归问题

3. BP神经网络

类别说明
基本定义BP(Back Propagation)神经网络是一种基于误差反向传播算法的多层前馈神经网络
工作原理

前向传播

• 输入数据从输入层向前传递

• 经过隐藏层处理

• 最终在输出层产生结果

反向传播

• 计算实际输出与期望输出的误差

• 误差从输出层向输入层反向传播

• 不断调整网络权重和偏置

学习过程

1. 初始化网络权重和偏置

2. 输入训练样本

3. 计算实际输出

4. 计算误差

5. 反向传播更新参数

6. 重复步骤2-5直到满足条件

主要特点

• 具有非线性映射能力

• 自学习和自适应能力

• 泛化能力强

• 容错性好

关键参数

• 学习率

• 隐藏层数量

• 每层神经元数量

• 激活函数

• 迭代次数

优点

• 适用性广

• 拟合能力强

• 可以解决复杂的非线性问题

缺点

• 可能陷入局部最小值

• 训练时间可能较长

• 网络结构难以确定

• 可能出现过拟合

应用领域

• 模式识别

• 预测分析

• 图像处理

• 语音识别

• 自动控制

三、卷积神经网络

1. 卷积神经网络概述

2. 卷积神经网络层次结构

2-1 输入层
 2-2 卷积层

 2-3 池化层

2-4  全连接层

 2-5 输出层

3. 经典卷积神经网络 

4. 卷积神经网络的应用 



四、循环神经网络

1.

2. 循环神经网络的结构



3. 循环神经网络的类别

4 经典循环神经网络

4-1 长短期记忆网络 LSTM
4-2 LSTM的核心
  • Ct 为长期记忆
  • ht 为短期记忆

4-3 LSTM的流程



 5. 循环神经网络的应用

  • 处理序列数据问题

五、生成对抗网络

1.  生成对抗网络概述

GAN通过两个神经网络——生成器(Generator)和判别器(Discriminator)——之间的对抗训练,实现数据的生成与逼真化。

2. 生成对抗网络主要组成部分

  • 生成器(Generator)

    • 功能:负责生成看似真实的假数据。
    • 输入:通常为随机噪声向量(如高斯噪声)。
    • 输出:与真实数据相同维度的合成数据(例如图像)。
    • 给定输入数据时,理解输入,生成类似的输出。
  • 判别器(Discriminator)

    • 功能:判断输入的数据是真实的还是由生成器生成的假数据。
    • 输入:真实数据和生成器生成的假数据。
    • 输出:一个介于0和1之间的概率值,表示输入数据为真实数据的概率。

生成器通过带噪声的数据生成了假的图像,判别器通过训练集和假的图像 识别真假。生成器和判别器通过这个过程不断进步。

2-2 GAN的优化目标
  • 生成器的目标

    • 生成逼真数据:生成器的主要任务是从随机噪声中生成看似真实的数据(如图像、音频等)。
    • 欺骗判别器:通过不断改进,生成器希望生成的数据能够以假乱真,使判别器难以区分其生成的数据和真实数据。
  • 判别器的目标

    • 区分真假数据:判别器的任务是准确判断输入的数据是真实的还是由生成器生成的。
    • 提高辨别能力:通过不断学习,判别器提升其区分真实数据和生成数据的能力。
2-3 最终目标
  • 平衡状态:在理想情况下,GAN 达到一种平衡状态,即生成器生成的数据与真实数据在统计分布上难以区分,判别器在判断时只能给出接近 50% 的概率。

  • 优化生成器:尽管判别器在训练过程中不断优化,但最终的目标是生成器能够独立生成高质量、逼真的数据。这意味着即使判别器不再参与,生成器依然能够产生令人信服的合成数据。

 3. 生成对抗网络工作流程

生成器生成的样本作为假的样本,接收样本为真的样本,目的 使生成器生成的样本更逼近真的样本,同时提高判别的器的性能。

3-2 对抗性优化过程
  • 对抗训练:GAN 的训练过程本质上是一个博弈,生成器和判别器互相竞争。生成器试图生成更逼真的数据以“欺骗”判别器,而判别器则努力提升辨别真假数据的能力。

  • 交替优化

    • 训练判别器:使用真实数据和生成器生成的假数据来训练判别器,使其更好地区分二者。
    • 训练生成器:通过反馈判别器的判别结果,调整生成器的参数,使其生成的数据更加逼真。

4. 生成对抗网络 与传统神经网络的区别

 5. 生成对抗神经网络类别

6. 生成对抗网络应用场景

六、机器学习PAI平台简单实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/943362.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MySQL和HBase的对比

Mysql :关系型数据库,主要面向 OLTP ,支持事务,支持二级索引,支持 sql ,支持主从、 Group Replication 架构模型(此处以 Innodb 为例,不涉及别的存储引擎)。 HBase &am…

Ftrans数据摆渡系统 搭建安全便捷跨网文件传输通道

一、专业数据摆渡系统对企业的意义 专业的数据摆渡系统对企业具有重要意义,主要体现在以下几个方面‌: 1、‌数据安全性‌:数据摆渡系统通过加密传输、访问控制和审计日志等功能,确保数据在传输和存储过程中的安全性。 2、‌高…

FPGA的DMA应用——pcileech

硬件通过pcie总线,访存本机的内存,并进行修改,可以进行很多操作。 学习视频:乱讲DMA及TLP 1-pcileech项目简介和自定义模块介绍_哔哩哔哩_bilibili vivado2024.1的下载文章链接和地址:AMD-Xilinx Vivado™ 2024.1 现…

未来网络技术的新征程:5G、物联网与边缘计算(10/10)

一、5G 网络:引领未来通信新潮流 (一)5G 网络的特点 高速率:5G 依托良好技术架构,提供更高的网络速度,峰值要求不低于 20Gb/s,下载速度最高达 10Gbps。相比 4G 网络,5G 的基站速度…

一种寻路的应用

应用背景 利用长途车进行货物转运的寻路计算。例如从深圳到大连。可以走有很多条长途车的路线。需要根据需求计算出最合适路线。不同的路线的总里程数、总价、需要的时间不一样。客户根据需求进行选择。主要有一些细节: 全国的长途车车站的数据的更新: …

STL格式转换为GLTF格式

STL与GLTF格式简介 STL格式 STL(Stereo Lithography)文件是一种广泛使用的3D打印文件格式,由3D Systems公司开发。它主要用于存储三维物体的几何信息,常用于立体光刻等3D打印技术。STL文件通常只包含物体的表面几何形状&#xf…

DevOps实战:用Kubernetes和Argo打造自动化CI/CD流程(1)

DevOps实战:用Kubernetes和Argo打造自动化CI/CD流程(1) 架构 架构图 本设计方案的目标是在一台阿里云ECS服务器上搭建一个轻量级的Kubernetes服务k3s节点,并基于Argo搭建一套完整的DevOps CI/CD服务平台,包括Argo CD…

数据结构经典算法总复习(下卷)

第五章:树和二叉树 先序遍历二叉树的非递归算法。 void PreOrderTraverse(BiTree T, void (*Visit)(TElemType)) {//表示用于查找的函数的指针Stack S; BiTree p T;InitStack(S);//S模拟工作栈while (p || !StackEmpty(S)) {//S为空且下一个结点为空,意味着结束遍…

前端知识补充—CSS

CSS介绍 什么是CSS CSS(Cascading Style Sheet),层叠样式表, ⽤于控制⻚⾯的样式 CSS 能够对⽹⻚中元素位置的排版进⾏像素级精确控制, 实现美化⻚⾯的效果. 能够做到⻚⾯的样式和结构分离 基本语法规范 选择器 {⼀条/N条声明} 1)选择器决定针对谁修改…

Spring Security 6 系列之九 - 集成JWT

之所以想写这一系列,是因为之前工作过程中使用Spring Security,但当时基于spring-boot 2.3.x,其默认的Spring Security是5.3.x。之后新项目升级到了spring-boot 3.3.0,结果一看Spring Security也升级为6.3.0,关键是其风…

【Go】context标准库

文章目录 1. 概述1.1 什么是 Context1.2 设计原理1.3 使用场景1.4 Context 分类核心:Context接口2. 源码解读4个实现emptyCtxTODO 和 BackgroundcancelCtxWithCancelcancelCtx.propagateCancel 构建父子关联parentCancelCtx 获取父上下文中的内嵌cancelCtxcanceltimerCtxWithT…

Windows和Linux安全配置和加固

一.A模块基础设施设置/安全加固 A-1.登录加固 1.密码策略 a.最小密码长度不少于8个字符,将密码长度最小值的属性配置界面截图。 练习用的WindowsServer2008,系统左下角开始 > 管理工具 > 本地安全策略 > 账户策略 > 密码策略 > 密码最小长度&#…

webrtc-internals调试工具

Google 的 Chrome(87 或更高版本)WebRTC 内部工具是一套内置于 Chrome 浏览器中的调试工具; webrtc-internals 能够查看有关视频和音频轨道、使用的编解码器以及流的一般质量的详细信息。这些知识对于解决音频和视频质量差的问题非常有帮助。 webrtc-int…

MT6765核心板_MTK6765安卓核心板规格参数_联发科MTK模块开发

MTK6765安卓核心板是基于联发科高效八核处理器平台开发的一款强大硬件解决方案。这款核心板的核心是采用12纳米工艺打造的MTK6765 CPU,具备四个主频高达2.3GHz的CORTEX-A53核心和四个主频为1.8GHz的CORTEX-A53核心,提供了卓越的处理性能。用户可以根据需…

Linux Shell 脚本编程基础知识篇—shell 运算命令详解

ℹ️大家好,我是练小杰,本文继续Linux shell脚本编程的基础知识内容,接着讲算术运算命令的详细操作~~ 复习:【shell简介以及基本操作】 更多Linux 相关内容请点击👉“Linux专栏”~ 文章目录 let运算命令的用法let 的高…

Nginx单向链表 ngx_list_t

目录 基本概述 数据结构 接口描述 具体实现 ngx_list_create ngx_list_init ngx_list_push 使用案例 整理自 nginx 1.9.2 源码 和 《深入理解 Nginx:模块开发与架构解析》 基本概述 Nginx 中的 ngx_list_t 是一个单向链表容器,链表中的每一个节…

KVM虚拟机管理脚本

思路: 在/opt/kvm下创建一个磁盘文件,做差异镜像,创建一个虚拟机配置文件,做虚拟机模版 [rootnode01 ~]# ls /opt/kvm/ vm_base.qcow2 vm_base.xml创建虚拟机的步骤:首先创建虚拟机的差异镜像,然后复制虚…

芯片Tapeout power signoff 之IR Drop Redhawk Ploc文件格式及其意义

数字IC后端工程师在芯片流程最后阶段都会使用redhawk或voltus进行设计的IR Drop功耗signoff分析。必须确保静态,动态ir drop都符合signoff标准。 在做redhawk ir drop分析前,我们需要提供一个redhawk ploc供电点坐标。 数字IC设计后端实现前期预防IR D…

流批一体向量化计算引擎 Flex 在蚂蚁的探索和实践

编者按:Flex是蚂蚁数据部自研的一款流批一体的向量化引擎,Flex是Fink和Velox的全称,也是Flexible的前缀,被赋予了灵活可插拔的寓意。本文将重点从向量化技术背景、Flex架构方案和未来规划三个方面展开论述。 作者介绍:…

Pytorch | 利用I-FGSSM针对CIFAR10上的ResNet分类器进行对抗攻击

Pytorch | 利用I-FGSSM针对CIFAR10上的ResNet分类器进行对抗攻击 CIFAR数据集I-FGSSM介绍I-FGSSM代码实现I-FGSSM算法实现攻击效果 代码汇总ifgssm.pytrain.pyadvtest.py 之前已经针对CIFAR10训练了多种分类器: Pytorch | 从零构建AlexNet对CIFAR10进行分类 Pytorch…