文章目录
- 前言
- 以太网框架
- ENET 接口简介
- MAC接口
- MII \ RMII 接口
- MDIO 接口
- RJ45 接口
- PHY芯片
- 以太网驱动
- 驱动挂载
- wifi模块挂载
- 后续
前言
linux驱动主要是字符设备驱动、块设备驱动还有网络设备驱动、字符设备驱动在本专栏前面已经详细将解了,网络设备驱动本文会做简要讲解,主要是讲解网络设备里面的以太网,PHY芯片,usb和sdio的wifi驱动挂载注意事项等,对网络内部实现仅仅只做简要介绍。
以太网框架
嵌入式网络硬件分为两部分:MAC 和 PHY,MAC 类似 I2C 控制器、SPI 控制器一样的外设,其外部必须搭配一个 PHY 芯片。
- 内部无MAC外设
- 找个外置的 MAC 芯片,一般这种外置的网络芯片都是 MAC+PHY 一体的。比如三星 linux 开发板里面用的最多的 DM9000,DM9000 对 SOC 提供了一个 SRAM 接口,但是此芯片需要进行手动开发网络的协议栈,类似STM32连接网络时所用的lwip。
- 外置的网络芯片更强大,内部甚至集成了硬件 TCP/IP 协议栈,对外提供一个 SPI 接 口,比如 W5500。一般用于单片机领域,由于内置了硬件 TCP/IP 协议栈,因此不需要移植软件协议栈,直接通过 SPI 来操作 W5500。
- 让不支持网络的 SOC 能够实现网络功能;网络效率不高,一般芯片内置的 MAC 会有网络加速引擎,比如网络专用 DMA;成本较高,可选择性少。
- 内部有MAC外设
- 上图是内部MAC,外置PHY芯片和RJ45坐子的连接示意图,关于内部有MAC的详解在接下来的内容中进行介绍。
ENET 接口简介
MAC接口
I.MX6ULL 内核集成了两个 10/100Mbit/S 的网络 MAC,符合 IEEE802.3-2002 标准,MAC 层支持双工、半双工局域网。MAC 可编程、可以作为 NIC 卡或其他一些交换器件。根据 IETF RFC 2819 协议,MAC 实现了 RMON(Remote Network Monitoring)计数功能。MAC 内核拥有硬件加速处理单元来提高网络性能,硬件加速单元用于处理 TCP/IP、UDP、ICMP 等协议。通过 硬件来处理帧头等信息,效果要比用一大堆软件处理要好很多。ENET 外设有一个专用的 DMA, 此 DMA 用于在 ENET 外设和 SOC 之间传输数据,并且支持可编程的增强型的缓冲描述符,用以支持 IEEE 1588
MII \ RMII 接口
内部 MAC 通过 MII/RMII 接口来与外部的 PHY 芯片连接,完成网络数据传输
-
MII接口
-
MII 全称是 Media Independent Interface,直译过来就是介质独立接口,它是 IEEE-802.3 定 义的以太网标准接口
-
前面的引脚含义看名称可以看出来不做解释,RX_DV:接收数据有效,作用类似 TX_EN。 CRS:载波侦听信号。 COL:冲突检测信号。
-
发送时钟和接收时钟如果网速为100M的话时钟频率为25MHz。
-
MII 接口的缺点就是所需信号线太多,因此引出了RMII接口
-
-
RMII接口
- RMII 全称是 Reduced Media Independent Interface,翻译过来就是精简的介质独立接口,也 就是 MII 接口的精简版本。
- REF_CLK:参考时钟,由外部时钟源提供, 频率为 50MHz。这里与 MII 不同,MII 的接收和发送时钟是独立分开的,而且都是由 PHY 芯片提供的。
- RMII 接口只需要 7 根数据线,相比 MII 直接减少了 9 根,极大的 方便了板子布线
- RMII 全称是 Reduced Media Independent Interface,翻译过来就是精简的介质独立接口,也 就是 MII 接口的精简版本。
-
此外还有GMII、RGMII、SMII、SMII 等接口,基本都是大同小异。
MDIO 接口
MDIO 全称是 Management Data Input/Output,直译过来就是管理数据输入输出接口,是一 个简单的两线串行接口,一根 MDIO 数据线,一根 MDC 时钟线。驱动程序可以通过 MDIO 和 MDC 这两根线访问 PHY 芯片的任意一个寄存器。
- MDIO 接口支持最多可达 32 个 PHY。同一时刻内只能对一个 PHY 进行操作,使用器件地址进行区分
- 同一 MDIO 接口下的所有 PHY 芯片,其器件地址不能冲突,必须保证唯一
RJ45 接口
- 网络设备是通过网线连接起来的,插入网线的叫做 RJ45 座,RJ45 座要与 PHY 芯片连接在一起
- 中间需要一个网络变压器,网络变压器用于隔离以及滤波等,网络变压器也是一个芯片。
- 很多 RJ45 座子内部已经集成了网络变压器,内置网络变压器的 RJ45 座和不内置的引脚一样,但是一般不内置的 RJ45 座会短一点。
- RJ45 座子上一般有两个灯,一个黄色(橙色),一个绿色,绿色亮的话表示网络连接正常,这两个灯由 PHY 芯片控制,PHY 芯片会有两个引 脚来连接 RJ45 座上的这两个灯。
PHY芯片
PHY 芯片寄存器地址空间为 5 位,地 址 0~31 共 32 个寄存器,IEEE 定义了 0~15 这 16 个寄存器的功能,16~31 这 16 个寄存器由厂 商自行实现。
- 不管你用的哪个厂家的 PHY 芯片,其中 0~15 这 16 个寄存器是一模一 样的,仅靠这 16 个寄存器是完全可以驱动起 PHY 芯片的,至少能保证基本的网络数据通信。
- 随着现在的 PHY 芯片性能越来越强大,32 个寄存器可能满足不了厂商的需求, 因此很多厂商采用分页技术来扩展寄存器地址空间,以求定义更多的寄存器。(需要 PHY 厂商提供相应的驱动源码)
- IEEE802.3 协议一共 8 个 SECTION,在 “802.3-2018_SECTION2” 中找到 “22.2.4 Management functions” 章节,此章节对 PHY 的前 16 个寄存器功能进行了规定。
MAC 层通过 MDIO/MDC 总线对 PHY 进行读写操作,MDIO 最多可以控制 32 个 PHY 芯 片,通过不同的 PHY 芯片地址来对不同的 PHY 操作。SR8201F 通过设置 LED0/PHYAD[0]和 LED1/PHYAD[1]这两个引脚来设置其 PHY 地址,因此SR8201F可以同时存在4个芯片连接到MAC上。
以太网驱动
-
申请 net_device:编写网络驱动的时候首先要使用 alloc_netdev 函数来申请 net_device,alloc_netdev 的本质是 alloc_netdev_mqs 函数,Linux 内核内核支持的网络接 口有很多,比如光纤分布式数据接口(FDDI)、以太网设备(Ethernet)、红外数据接口(InDA)、高 性能并行接口(HPPI)、CAN 网络等。内核针对不同的网络设备在 alloc_netdev 的基础上提供了 一层封装,比如我们本章讲解的以太网,针对以太网封装的 net_device 申请函数是 alloc_etherdev,alloc_etherdev 最 终 依 靠 的 是 alloc_etherdev_mqs 函数。
struct net_device *alloc_etherdev_mqs(int sizeof_priv, unsigned int txqs, unsigned int rxqs) { return alloc_netdev_mqs(sizeof_priv, "eth%d", NET_NAME_UNKNOWN, ether_setup, txqs, rxqs); }
- alloc_netdev_mqs 来申请 net_device,注意这里设置网卡的名字为“eth%d”,这是格式化字符串,大家进入开发板的 linux 系统以后看到的“eth0”、“ eth1”这样的网卡名字就 是从这里来的。
- 设置了以太网的 setup 函数为 ether_setup,不同的网络设备其 setup 函数不同,比如 CAN 网络里面 setup 函数就是 can_setup。
- ether_setup 函数会对 net_device 做初步的初始化。
-
注销网络驱动的时候 需要释 放掉前面 已经申 请到的 net_device ,释放函 数为 free_netdev。
-
注册 net_device:net_device 申请并初始化完成以后就需要向内核注册 net_device,要用到函数 register_netdev。
-
注销 net_device 使用函数 unregister_netdev。
-
net_device_ops 结构体:net_device 有个非常重要的成员变量:netdev_ops,为 net_device_ops 结构体指针类型,这 就是网络设备的操作集。net_device_ops 结构体里面都是一些以“ndo_”开头的函数,这些函数就需要网络驱动编写人员 去实现,不需要全部都实现,根据实际驱动情况实现其中一部分即可。
- ndo_open 函数,打开网络设备的时候此函数会执行,网络驱动程序需要实现此函 数,非常重要!(包含使能网络外设时钟、申请网络所使用的环形缓冲区、初始化 MAC 外设等内容)
- ndo_stop 函数,关闭网络设备的时候此函数会执行,网络驱动程序也需要实现此函数。(包括停止 PHY、停止 NAPI 功能、停止发送功能等)
- ndo_start_xmit 函数,当需要发送数据的时候此函数就会执行,此函数有一个参数 为 sk_buff 结构体指针,sk_buff 结构体在 Linux 的网络驱动中非常重要,sk_buff 保存了上层传递给网络驱动层的数据。
- ……还有很多很重要的函数
-
**sk_buff 结构体 **:网络是分层的,对于应用层而言不用关心具体的底层是如何工作的,只需要按照协议将要 发送或接收的数据打包好即可。打包好以后都通过 dev_queue_xmit 函数将数据发送出去,接收数据的话使用 netif_rx 函数即可
- dev_queue_xmit 函数
- netif_rx 函数:上层接收数据的话使用 netif_rx 函数,但是最原始的网络数据一般是通过轮询、中断或 NAPI 的方式来接收,关于接收函数主要是以下两个部分,第一个是数据处理部分主要是通过sk_buff实现的,第二个部分是数据接收主要是通过 NAPI 实现的。
- sk_buff 这个结构体用于管理接收或发送数据包,针对 sk_buff 内核提供了一系列的操作与管理函数。
- NAPI 的核心思想就是不全部采用中断来读取网络数据,而是采用中断来唤醒数据接收服务程 序,在接收服务程序中采用 POLL 的方法来轮询处理数据。这种方法的好处就是可以提高短数 据包的接收效率,减少中断处理的时间。Linux 内核使用结构体 napi_struct 表示 NAPI,针对 NAPI 内核提供了一系列的操作与管理函数。
- dev_queue_xmit 函数
驱动挂载
对于驱动的配置与源码分析,篇幅较多,这里大概说一下主要内容包含哪些,具体的还请参考正点原子的教材。
- 设备树的配置,包含fec部分和子节点mdio部分(此子节点用于指定网络外设所使用的 MDIO 总线, 主要作为 PHY 节点的容器)
- fec匹配表包含“fsl,imx6ul-fec”,设备树和驱动匹配上,当匹配成功以后 fec_probe 函数就会执行,该函数会实现以太网驱动所提到的所有初始化内容,。
- MDIO 总线注册:Linux 内核专门为 MDIO 准备一个总线,叫做 MDIO 总线,采用 mii_bus 结构体表示,fec_probe 函数不仅会初始化以太网相关内容也会调用 fec_enet_mii_init 函数完成 MII 接口的初始化,其中就包括初始化 mii_bus 下的 read 和 write 这两个函数。
- PHY驱动:of_mdiobus_register 函数有两个主要的功能,一个是通过 mdiobus_register 函数向 Linux 内核注册 mdio 总线,另一个就是通过 of_mdiobus_register_phy 函数向内核注册 PHY。
wifi模块挂载
wifi模块的加载就是编译内核生成相关的驱动文件,然后配置工具进行wifi连接和测试即可
modprobe 8188eu.ko
ifconfig wlan0 up
iwlist wlan0 sacn
wpa_supplicant -D wext -c /etc/wpa_supplicant.conf -i wlan0 &
udhcpc -i wlan0
后续
网络驱动是一个比较大的方向,仅仅只做了大体的框架分析,如果后期有更深入的需求再详细分析内部实现,这里只是给大家做一个了解。