Pytorch | 利用BIM/I-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击

Pytorch | 利用BIM/I-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击

  • CIFAR数据集
  • BIM介绍
    • 基本原理
    • 算法流程
  • BIM代码实现
    • BIM算法实现
    • 攻击效果
  • 代码汇总
    • bim.py
    • train.py
    • advtest.py

之前已经针对CIFAR10训练了多种分类器:
Pytorch | 从零构建AlexNet对CIFAR10进行分类
Pytorch | 从零构建Vgg对CIFAR10进行分类
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
Pytorch | 从零构建ResNet对CIFAR10进行分类
Pytorch | 从零构建MobileNet对CIFAR10进行分类
Pytorch | 从零构建EfficientNet对CIFAR10进行分类
Pytorch | 从零构建ParNet对CIFAR10进行分类

本篇文章我们使用Pytorch实现BIM/I-FGSM对CIFAR10上的ResNet分类器进行攻击.

CIFAR数据集

CIFAR-10数据集是由加拿大高级研究所(CIFAR)收集整理的用于图像识别研究的常用数据集,基本信息如下:

  • 数据规模:该数据集包含60,000张彩色图像,分为10个不同的类别,每个类别有6,000张图像。通常将其中50,000张作为训练集,用于模型的训练;10,000张作为测试集,用于评估模型的性能。
  • 图像尺寸:所有图像的尺寸均为32×32像素,这相对较小的尺寸使得模型在处理该数据集时能够相对快速地进行训练和推理,但也增加了图像分类的难度。
  • 类别内容:涵盖了飞机(plane)、汽车(car)、鸟(bird)、猫(cat)、鹿(deer)、狗(dog)、青蛙(frog)、马(horse)、船(ship)、卡车(truck)这10个不同的类别,这些类别都是现实世界中常见的物体,具有一定的代表性。

下面是一些示例样本:

在这里插入图片描述

BIM介绍

BIM(Basic Iterative Method)算法,也称为迭代快速梯度符号法(Iterative Fast Gradient Sign Method,I-FGSM),是一种基于梯度的对抗攻击算法,以下是对它的详细介绍:

基本原理

  • 利用模型梯度:与FGSM(Fast Gradient Sign Method)算法类似,BMI算法也是利用目标模型对输入数据的梯度信息来生成对抗样本。通过在原始输入样本上添加一个微小的扰动,使得模型对扰动后的样本产生错误的分类结果。
  • 迭代更新扰动:不同于FGSM只进行一次梯度计算和扰动添加,BMI算法通过多次迭代来逐步调整扰动,每次迭代都根据当前模型对扰动后样本的梯度来更新扰动,使得扰动更具针对性和有效性,从而增加攻击的成功率。

算法流程

  1. 初始化:首先获取原始的输入图像(x)和对应的真实标签 y y y,并设置一些攻击参数,如扰动量 ϵ \epsilon ϵ、步长 α \alpha α 和迭代次数 T T T 等。然后将原始图像复制一份作为初始的对抗样本 x a d v = x x^{adv}=x xadv=x
  2. 迭代攻击:在每次迭代 t t t t = 1 , 2 , ⋯   , T t = 1, 2, \cdots, T t=1,2,,T)中,将当前的对抗样本 x a d v x^{adv} xadv 输入到目标模型 f f f 中,计算模型的输出 f ( x a d v ) f(x^{adv}) f(xadv) 和损失 J ( x a d v , y ) J(x^{adv}, y) J(xadv,y),其中损失函数通常使用交叉熵损失等。接着计算损失关于对抗样本的梯度 ∇ x a d v J ( x a d v , y ) \nabla_{x^{adv}}J(x^{adv}, y) xadvJ(xadv,y),并根据梯度的符号来更新对抗样本: x a d v = x a d v + α ⋅ sign ( ∇ x a d v J ( x a d v , y ) ) x^{adv}=x^{adv}+\alpha\cdot \text{sign}(\nabla_{x^{adv}}J(x^{adv}, y)) xadv=xadv+αsign(xadvJ(xadv,y))
  3. 裁剪扰动:为了确保扰动后的样本与原始样本在视觉上不会有太大差异,需要对更新后的对抗样本进行裁剪,使其满足 x a d v = clip ( x a d v , x − ϵ , x + ϵ ) x^{adv}=\text{clip}(x^{adv}, x-\epsilon, x+\epsilon) xadv=clip(xadv,xϵ,x+ϵ),即保证扰动后的样本在原始样本的 ϵ \epsilon ϵ 邻域内。
  4. 终止条件判断:经过(T)次迭代后,得到最终的对抗样本(x^{adv}),此时将其输入到目标模型中,若模型对其的预测结果与真实标签不同,则攻击成功,否则攻击失败。

BIM代码实现

BIM算法实现

import torch
import torch.nn as nn

def BIM(model, criterion, original_images, labels, epsilon, num_iterations=10):
    """
    BIM (Basic Iterative Method)
    I-FGSM (Iterative Fast Gradient Sign Method)

    参数:
    model: 要攻击的模型
    criterion: 损失函数
    original_images: 原始图像
    labels: 原始图像的标签
    epsilon: 最大扰动幅度
    num_iterations: 迭代次数 
    
    """
    # alpha 每次迭代步长
    alpha = epsilon / num_iterations
    perturbed_images = original_images.clone().detach().requires_grad_(True)

    for _ in range(num_iterations):
        # 计算损失
        outputs = model(perturbed_images)
        loss = criterion(outputs, labels)

        model.zero_grad()
        # 计算梯度
        loss.backward()

        # 更新对抗样本
        perturbation = alpha * perturbed_images.grad.sign()
        perturbed_images = perturbed_images + perturbation
        perturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)
        perturbed_images = perturbed_images.detach().requires_grad_(True)

    return perturbed_images

攻击效果

在这里插入图片描述

代码汇总

bim.py

import torch
import torch.nn as nn

def BIM(model, criterion, original_images, labels, epsilon, num_iterations=10):
    """
    BIM (Basic Iterative Method)
    I-FGSM (Iterative Fast Gradient Sign Method)

    参数:
    model: 要攻击的模型
    criterion: 损失函数
    original_images: 原始图像
    labels: 原始图像的标签
    epsilon: 最大扰动幅度
    num_iterations: 迭代次数 
    
    """
    # alpha 每次迭代步长
    alpha = epsilon / num_iterations
    perturbed_images = original_images.clone().detach().requires_grad_(True)

    for _ in range(num_iterations):
        # 计算损失
        outputs = model(perturbed_images)
        loss = criterion(outputs, labels)

        model.zero_grad()
        # 计算梯度
        loss.backward()

        # 更新对抗样本
        perturbation = alpha * perturbed_images.grad.sign()
        perturbed_images = perturbed_images + perturbation
        perturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)
        perturbed_images = perturbed_images.detach().requires_grad_(True)

    return perturbed_images

train.py

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from models import ResNet18


# 数据预处理
transform_train = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])

transform_test = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])

# 加载Cifar10训练集和测试集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)

# 定义设备(GPU或CPU)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# 初始化模型
model = ResNet18(num_classes=10)
model.to(device)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

if __name__ == "__main__":
    # 训练模型
    for epoch in range(10):  # 可以根据实际情况调整训练轮数
        running_loss = 0.0
        for i, data in enumerate(trainloader, 0):
            inputs, labels = data[0].to(device), data[1].to(device)

            optimizer.zero_grad()

            outputs = model(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()

            running_loss += loss.item()
            if i % 100 == 99:
                print(f'Epoch {epoch + 1}, Batch {i + 1}: Loss = {running_loss / 100}')
                running_loss = 0.0

    torch.save(model.state_dict(), f'weights/epoch_{epoch + 1}.pth')
    print('Finished Training')

advtest.py

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from models import *
from attacks import *
import ssl
import os
from PIL import Image
import matplotlib.pyplot as plt

ssl._create_default_https_context = ssl._create_unverified_context

# 定义数据预处理操作
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.491, 0.482, 0.446), (0.247, 0.243, 0.261))])

# 加载CIFAR10测试集
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=128,
                                         shuffle=False, num_workers=2)

# 定义设备(GPU优先,若可用)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model = ResNet18(num_classes=10).to(device)

criterion = nn.CrossEntropyLoss()

# 加载模型权重
weights_path = "weights/epoch_10.pth"
model.load_state_dict(torch.load(weights_path, map_location=device))


if __name__ == "__main__":
    # 在测试集上进行FGSM攻击并评估准确率
    model.eval()  # 设置为评估模式
    correct = 0
    total = 0
    epsilon = 16 / 255  # 可以调整扰动强度
    for data in testloader:
        original_images, labels = data[0].to(device), data[1].to(device)
        original_images.requires_grad = True
        
        attack_name = 'BIM'
        if attack_name == 'FGSM':
            perturbed_images = FGSM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'BIM':
            perturbed_images = BIM(model, criterion, original_images, labels, epsilon)
        
        perturbed_outputs = model(perturbed_images)
        _, predicted = torch.max(perturbed_outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    accuracy = 100 * correct / total
    # Attack Success Rate
    ASR = 100 - accuracy
    print(f'Load ResNet Model Weight from {weights_path}')
    print(f'epsilon: {epsilon}')
    print(f'ASR of {attack_name} : {ASR}%')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/942169.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何查看pad的console输出,以便我们更好的进行调试,查看并了解实际可能的问题。

1、以下是baidu AI回复: 2、说明: 1)如果小伙伴们经常做android开发的话,这个不陌生,因为调试都是要开启这个开发者模式。并启用USB调试模式。 2)需要连上USB线,有的时候会忘记,然…

外贸企业需要部署SD-WAN专线吗?

随着外贸行业对互联网和数字化技术依赖的加深,网络质量已成为影响企业运营效率和竞争力的重要因素。本文将深入探讨SD-WAN专线如何助力外贸企业优化业务运营。 外贸企业面临的网络挑战 1. 跨国访问速度缓慢 在访问海外服务器或目标网站时,外贸企业常常遭…

MySQL什么情况下会导致索引失效

MySQL什么情况下会导致索引失效 索引(Index)是数据库中一种用于快速查找和访问表中数据的结构,它类似于书的目录,通过索引可以快速定位到目标数据,而无需遍历整个表,索引的存在可以显著提高查询速度&#x…

两分钟解决:vscode卡在设置SSH主机,VS Code-正在本地初始化VSCode服务器

问题原因 remote-ssh还是有一些bug的,在跟新之后可能会一直加载初始化SSH主机解决方案 1.打开终端2.登录链接vscode的账号,到家目录下3.找到 .vscode-server文件,删掉这个文件4.重启 vscode 就没问题了

uniapp登录

第一步整登录 先整个appid APPID和APPSecret https://developers.weixin.qq.com/community/develop/article/doc/000ca4601b8f70e379febac985b413 一个账号只能整一个小程序 正确流程 调用uni.login https://juejin.cn/post/7126553599445827621 https://www.jb51.net/a…

I.MX6U 启动方式详解

一、启动方式选择 BOOT 的处理过程是发生在 I.MX6U 芯片上电以后,芯片会根据 BOOT_MODE[1:0]的设置 来选择 BOOT 方式。 BOOT_MODE[1:0]的值是可以改变的,有两种方式,一种是改写 eFUSE(熔 丝),一种是修改相应的 GPIO 高低电平。第一种修改 eFUSE 的方式只能修改一次,后面就…

项目代码第6讲:UpdownController.cs;理解 工艺/工序 流程、机台信息;前端的“历史 警报/工艺 记录”;每个机台各个管道的数据(温度、压力、气体)

一、UpdownController.cs 1、前端传入 当用户在下图的“记录查询”中的 两个界面选项 中,点击“导出”功能时,向后端发起请求,请求服务器下载文件的权限 【权限是在Program.cs中检测的,这个控制器里只需要进行“谁在哪个接口下载了文件”的日志记录】 【导出:是用户把…

WebRTC搭建与应用(五)-Coturn踩坑记

WebRTC搭建与应用(五)-Coturn踩坑记 近期由于项目需要在研究前端WebGL渲染转为云渲染,借此机会对WebRTC等有了初步了解,在此记录一下,以防遗忘。 第五章 WebRTC搭建与应用(五)-Coturn踩坑记 文章目录 WebRTC搭建与应用(五)-Coturn踩坑记前…

JVM简介—3.JVM的执行子系统

大纲 1.Class文件结构 2.Class文件格式概述 3.Class文件格式详解 4.字节码指令 5.类的生命周期和初始化 6.类加载的全过程 7.类加载器 8.双亲委派模型 9.栈桢详解 11.方法调用详解 12.基于栈的字节码解释执行引擎 1.Class文件结构 (1)Java跨平台的基础 字节码是各…

将自定义或第三方库的jar包引入项目中

文章目录 1.背景2.实现 1.背景 个人项目中引入了某个免费版框架有字数限制,我们业务需要生成字数很多,超过了限制,现在要引入自定义的jar解决问题。 2.实现 在resource文件夹下建lib文件夹 (属于是约定),将自己的jar包放入 然后…

STL格式转换为FBX格式

STL格式与FBX格式简介 STL(Stereo Lithography)文件是一种用于3D打印的文件格式。它是由3D Systems公司开发的一种二进制文件格式,用于立体光刻技术。 FBX格式支持多边形游戏模型、曲线、表面、点组材质。FBX文件格式支持所有主要的三维数据…

VMware虚拟机三种网络工作模式

vmware为我们提供了三种网络工作模式,它们分别是:Bridged(桥接模式)、NAT(网络地址转换模式)、Host-Only(仅主机模式)。 打开vmware虚拟机,我们可以在选项栏的“编辑”下的“虚拟网络编辑器”中看到VMnet0(桥接模式)、VMnet1(仅主机模式)、VMnet8(NAT模式),那…

AI 技术,让洗护行业焕然「衣」新

根据最新的 Location 数据显示,国内目前有 20.79 万家与洗衣服务相关的企业。其中超过 80% 仍然是传统的夫妻店模式,即前店收衣后店洗衣的小型洗衣店。这种模式通常规模较小,服务范围有限,主要依赖于店主的个人经营。 另外 20% 企…

Hadoop集群(HDFS集群、YARN集群、MapReduce​计算框架)

一、 简介 Hadoop主要在分布式环境下集群机器,获取海量数据的处理能力,实现分布式集群下的大数据存储和计算。 其中三大核心组件: HDFS存储分布式文件存储、YARN分布式资源管理、MapReduce分布式计算。 二、工作原理 2.1 HDFS集群 Web访问地址&…

HDR视频技术之十:MPEG 及 VCEG 的 HDR 编码优化

与传统标准动态范围( SDR)视频相比,高动态范围( HDR)视频由于比特深度的增加提供了更加丰富的亮区细节和暗区细节。最新的显示技术通过清晰地再现 HDR 视频内容使得为用户提供身临其境的观看体验成为可能。面对目前日益…

精准提升:从94.5%到99.4%——目标检测调优全纪录

🚀 目标检测模型调优过程记录 在进行目标检测模型的训练过程中,我们面对了许多挑战与迭代。从初始模型的训练结果到最终的调优优化,每一步的实验和调整都有其独特的思路和收获。本文记录了我在优化目标检测模型的过程中进行的几次尝试&#…

Hadoop中MapReduce过程中Shuffle过程实现自定义排序

文章目录 Hadoop中MapReduce过程中Shuffle过程实现自定义排序一、引言二、实现WritableComparable接口1、自定义Key类 三、使用Job.setSortComparatorClass方法2、设置自定义排序器3、自定义排序器类 四、使用示例五、总结 Hadoop中MapReduce过程中Shuffle过程实现自定义排序 一…

论文《Vertical Federated Learning: Concepts, Advances, and Challenges》阅读

论文《Vertical Federated Learning: Concepts, Advances, and Challenges》阅读 论文概况纵向联邦VFL框架介绍问题定义VFL 训练协议 对通信效率的优化对性能的优化自监督方案(Self-Supervised Approaches)半监督方案(Semi-Supervised Approa…

【Rust自学】4.5. 切片(Slice)

4.5.0. 写在正文之前 这是第四章的最后一篇文章了,在这里也顺便对这章做一个总结: 所有权、借用和切片的概念确保 Rust 程序在编译时的内存安全。 Rust语言让程序员能够以与其他系统编程语言相同的方式控制内存使用情况,但是当数据所有者超…

WEB入门——文件上传漏洞

文件上传漏洞 一、文件上传漏洞 1.1常见的WebShell有哪些?1.2 一句话木马演示1.2 文件上传漏洞可以利用需满足三个条件1.3 文件上传导致的危害 二、常用工具 2.1 搭建upload-labs环境2.2 工具准备 三、文件上传绕过 3.1 客户端绕过 3.1.1 实战练习 :upl…