Hadoop集群(HDFS集群、YARN集群、MapReduce​计算框架)

一、 简介

Hadoop主要在分布式环境下集群机器,获取海量数据的处理能力,实现分布式集群下的大数据存储和计算。

其中三大核心组件HDFS存储分布式文件存储、YARN分布式资源管理、MapReduce分布式计算。

二、工作原理

2.1 HDFS集群

Web访问地址:http://hadoop1:9870

HDFS由NameNode(主节点)、SecondaryNameNode(辅助节点)、DataNode(从节点)构成,

其中NameNode负责管理整个HDFS集群,SecondaryNameNode辅助NameNode管理元数据,DataNode负责存储实际的数据块(一个block块默认大小128MB)和对数据块的读、写操作。

2.1.1 block数据块

  • 基本存储单位(一般64M)
  • 一个大文件会被拆分成多个block块,然后存储到不通机器上
  • 每块会备份到其他机器上,保证数据安全性,防止数据丢失(默认备份3份)。

2.1.2 NameNode

  • 管理文件系统命名空间和客户端对文件访问
  • 保存文件具体信息(文件信息、文件拆分block块信息、以及block和DataNode的信息)
  • 接收用户请求

2.1.3 DataNode

  • 保存具体的block数据
  • 负责数据的读写操作和复制操作
  • 向NameNode报告当前存储或者修改的数据信息
  • DataNode之间进行相互通信,复制数据块

2.1.4 Secondary NameNode

  • 定时与NameNode进行同步(合并fsimage和edits文件)
  • 当NameNode失效时,需要手工将其设置成主机

2.1.5 文件写入步骤

    1. Client(客户端)请求namenode保存文件。
    2. NameNode接收到客户端请求后, 会校验客户端针对该文件是否有写的权利,文件是否存在,校验通过后告知客户端可以上传。
    3. 接收到可以上传的指令后, 客户端会按照128MB(默认)对文件进行切块。
    4. Client(客户端)再次请求namenode, 第1个Block块的上传位置。
    5. namenode会根据副本机制, 负载均衡, 机架感知原理及网络拓扑图, 返回给客户端存储该Block块的DataNode列表。
        例如: node1, node2, node3;
    6. Client(客户端)会先连接就近的datanode机器, 然后依次和其他的datanode进行连接, 形成传输管道(Pipeline);
    7. 采用数据报包(DataPacket)的形式传输数据, 每个包的大小不超过64KB, 并建立反向应答机制(ACK机制);
    8. 具体的上传动作: node1 -> node2 -> node3,  ACK反向应答机制: node3 => node2 => node1。
    9. 重复上述的步骤, 直至第1个Block块上传完毕。
   10. 第一个Bloc上传完毕客户端(Client)重新请求第二个Block的上传位置, 重复上述动作, 直至所有的Block块传输完毕。

至此, HDFS写数据流程结束。

2.1.6 文件读取步骤

 1. Client(客户端)请求namenode, 读取文件。
 2. NameNode校验该客户端是否有读权限, 及该文件是否存在, 校验成功后, 会返回给客户端该文件的块信息。
        例如:
            block1: node1, node2, node5
            block2: node3, node6, node8
            block3: node2, node5, node6     这些地址都是鲜活的;
            ......
    3. Client(客户端)会连接上述的机器(节点), 并行的从中读取块的数据。
    4. Client(客户端)读取完毕后, 会循环NameNode获取剩下所有的(或者部分的块信息), 并行读取, 直至所有数据读取完毕。
    5. Client(客户端)根据Block块编号, 把多个Block块数据合并成最终文件即可。

2.1.7 数据备份

  1. NameNode负责管理block块的复制,它周期性地接收集群中所有DataNode的心跳数据包和Blockreport。心跳包表示DataNode正常工作,Blockreport描述了该DataNode上所有的block组成的列表。
  2. HDFS采用一种称为rack-aware的策略来决定备份数据的存放。通过一个称为Rack Awareness的过程,NameNode决定每个DataNode所属rack id。缺省情况下,一个block块会有三个备份,一个在NameNode指定的DataNode上,一个在指定DataNode非同一rack的DataNode上,一个在指定DataNode同一rack的DataNode上。这种策略综合考虑了同一rack失效、以及不同rack之间数据复制性能问题。
  3. 为了降低整体的带宽消耗和读取延时,HDFS会尽量读取最近的副本。如果在同一个rack上有一个副本,那么就读该副本。如果一个HDFS集群跨越多个数据中心,那么将首先尝试读本地数据中心的副本。

2.1.8 HDFS工作原理

1、NameNode初始化时会产生一个edits文件和一个fsimage文件。
2、随着edits文件不断增大,当达到设定的阀值时(1个小时或写入100万次),SecondaryNameNode把edits文件和fsImage文件复制到本地,同时NameNode会产生一个新的edits文件替换掉旧的edits文件,这样以保证数据不会出现冗余。
3、SecondaryNameNode拿到这两个文件后,会在内存中进行合并成一个fsImage.ckpt的文件(这个过程称为checkpoint),合并完成后,再将fsImage.ckpt文件推送给NameNode。
4、NameNode文件拿到fsImage.ckpt文件后,会将旧的fsimage文件替换掉(并不会立刻替换,而是达到一定阈值后被替换掉),并且改名成fsimage文件。

通过以上几步则完成了edits和fsimage文件的合并,依此不断循环,从而到达保证元数据的正确性。在紧急情况下, SecondaryNameNode可以用来恢复namenode的元数据。

2.2 YARN集群

Web访问地址:http://hadoop1:8088

YARN是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作平台,而Mapreduce等运算程序相当于运行在操作系统之上的应运程序。

YARN组成由ResourceManager、AppMaster进程、NodeManager组成

2.2.1 ResourceManager(主节点)

ResourceManager是master上的进程,负责整个分布式系统的资源管理和调度。会处理来自client端的请求(包括提交作业/杀死作业);启动/监控Application Master;监控NodeManager的情况,比如可能挂掉的NodeManager。

2.2.2 NodeManager(从节点)

负责接收并执行ResourceManager分配的计算任务。相对应的,NodeManager时处在slave节点上的进程,他只负责当前slave节点的资源管理和调度,以及task的运行。他会定期向ResourceManager回报资源/Container的情况(heartbeat);接受来自ResourceManager对于Container的启停命令。

2.2.3 AppMaster进程

每一个提交到集群的作业都会有一个与之对应的Application Master来负责应用程序的管理。他负责进行数据切分;为当前应用程序向ResourceManager去申请资源(也就是Container),并分配给具体的任务;与NodeManager通信,用来启停具体的任务,任务运行在Container中;而任务的监控和容错也是由Application Master来负责的。

        1个计算任务=1个AppMaster进程

        由该AppMaster进程来监控和管理该计算任务

2.2.4 Container

它包含了Application Master向ResourceManager申请的计算资源,比如说CPU/内存的大小,以及任务运行所需的环境变量和队任务运行情况的描述。

2.3  MapReduce工作原理

MapReduce是一种分布式计算框架。MR的执行流程:

  1. MR任务分为MapTask任务 ReduceTask任务两部分, 其中MapTask任务负责:分; ReduceTask任务负责:合。

  •  1个切片(默认128MB) = 1个MapTask任务 = 1个分好区, 排好序, 规好约的磁盘文件;

    2. 先对文件进行切片, 每个切片对应1个MapTask任务, 任务内部会逐行读取数据, 交由MapTask任务来处理。
    3. MapTask对数据进行分区,排序,规约处理后, 会将数据放到1个 环形缓冲区中(默认大小: 100MB, 溢写比: 0.8), 达到80MB就会触发溢写线程。
    4. 溢写线程会将环形缓冲区中的结果写到磁盘的小文件中, 当MapTask任务结束的时候, 会对所有的小文件(10个/次)合并, 形成1个大的磁盘文件。
    5. ReduceTask任务会开启拷贝线程, 从上述的各个结果文件中, 拉取属于自己分区的数据, 进行分组、统计、聚合。
    6. ReduceTask将处理后的结果, 写到结果文件中;

  • 1个分区 = 1个ReduceTask任务 = 1个结果文件;

2.4  三者之间的关系

 客户端Client提交任务到资源管理器(ResourceManager),资源管理器接收到任务之后去NodeManager节点开启任务(ApplicationMaster), ApplicationMaster向ResourceManager申请资源, 若有资源ApplicationMaster负责开启任务即MapTask。开始干活了即分析任务,每个map独立工作,各自负责检索各自对应的DataNode,将结果记录到HDFS, DataNode负责存储,NameNode负责记录,2nn负责备份部分数据。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/942145.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

HDR视频技术之十:MPEG 及 VCEG 的 HDR 编码优化

与传统标准动态范围( SDR)视频相比,高动态范围( HDR)视频由于比特深度的增加提供了更加丰富的亮区细节和暗区细节。最新的显示技术通过清晰地再现 HDR 视频内容使得为用户提供身临其境的观看体验成为可能。面对目前日益…

精准提升:从94.5%到99.4%——目标检测调优全纪录

🚀 目标检测模型调优过程记录 在进行目标检测模型的训练过程中,我们面对了许多挑战与迭代。从初始模型的训练结果到最终的调优优化,每一步的实验和调整都有其独特的思路和收获。本文记录了我在优化目标检测模型的过程中进行的几次尝试&#…

Hadoop中MapReduce过程中Shuffle过程实现自定义排序

文章目录 Hadoop中MapReduce过程中Shuffle过程实现自定义排序一、引言二、实现WritableComparable接口1、自定义Key类 三、使用Job.setSortComparatorClass方法2、设置自定义排序器3、自定义排序器类 四、使用示例五、总结 Hadoop中MapReduce过程中Shuffle过程实现自定义排序 一…

论文《Vertical Federated Learning: Concepts, Advances, and Challenges》阅读

论文《Vertical Federated Learning: Concepts, Advances, and Challenges》阅读 论文概况纵向联邦VFL框架介绍问题定义VFL 训练协议 对通信效率的优化对性能的优化自监督方案(Self-Supervised Approaches)半监督方案(Semi-Supervised Approa…

【Rust自学】4.5. 切片(Slice)

4.5.0. 写在正文之前 这是第四章的最后一篇文章了,在这里也顺便对这章做一个总结: 所有权、借用和切片的概念确保 Rust 程序在编译时的内存安全。 Rust语言让程序员能够以与其他系统编程语言相同的方式控制内存使用情况,但是当数据所有者超…

WEB入门——文件上传漏洞

文件上传漏洞 一、文件上传漏洞 1.1常见的WebShell有哪些?1.2 一句话木马演示1.2 文件上传漏洞可以利用需满足三个条件1.3 文件上传导致的危害 二、常用工具 2.1 搭建upload-labs环境2.2 工具准备 三、文件上传绕过 3.1 客户端绕过 3.1.1 实战练习 :upl…

【NLP高频面题 - Transformer篇】Transformer的位置编码是如何计算的?

【NLP高频面题 - Transformer篇】Transformer的位置编码是如何计算的? 重要性:★★★ NLP Github 项目: NLP 项目实践:fasterai/nlp-project-practice 介绍:该仓库围绕着 NLP 任务模型的设计、训练、优化、部署和应用…

[react 3种方法] 获取ant组件ref用ts如何定义?

获取ant的轮播图组件, 我用ts如何定义? Strongly Type useRef with ElementRef | Total TypeScript import React, { ElementRef } from react; const lunboRef useRef<ElementRef<typeof Carousel>>(null); <Carousel autoplay ref{lunboRef}> 这样就…

模型优化之知识蒸馏

文章目录 知识蒸馏优点工作原理示例代码 知识蒸馏优点 把老师模型中的规律迁移到学生模型中&#xff0c;相比从头训练&#xff0c;加快了训练速度。另一方面&#xff0c;如果学生模型的训练精度和老师模型差不多&#xff0c;相当于得到了规模更小的学生模型&#xff0c;起到模…

职业技能赛赛后心得

这是一位粉丝所要求的&#xff0c;也感谢这位粉丝对我的支持。 那么本篇文章我也是分成四个部分&#xff0c;来总结一下这次赛后心得。 赛中问题 那么这里的赛中问题不会只包含我所遇到的问题&#xff0c;也会包含赛中其他选手出现的问题。 那么首先我先说一下我在赛中遇到的…

基于springboot+vue实现的博物馆游客预约系统 (源码+L文+ppt)4-127

摘 要 旅游行业的快速发展使得博物馆游客预约系统成为了一个必不可少的工具。基于Java的博物馆游客预约系统旨在提供高效、准确和便捷的适用博物馆游客预约服务。本文讲述了基于java语言开发&#xff0c;后台数据库选择MySQL进行数据的存储。该软件的主要功能是进行博物馆游客…

前沿重器[57] | sigir24:大模型推荐系统的文本ID对齐学习

前沿重器 栏目主要给大家分享各种大厂、顶会的论文和分享&#xff0c;从中抽取关键精华的部分和大家分享&#xff0c;和大家一起把握前沿技术。具体介绍&#xff1a;仓颉专项&#xff1a;飞机大炮我都会&#xff0c;利器心法我还有。&#xff08;算起来&#xff0c;专项启动已经…

Dubbo 3.x源码(28)—Dubbo服务发布导出源码(7)应用级服务接口元数据发布

基于Dubbo 3.1&#xff0c;详细介绍了Dubbo服务的发布与引用的源码。 此前我们在Dubbo启动过程的DefaultModuleDeployer#startSync方法中&#xff0c;学习了Dubbo服务的导出exportServices方法和服务的引入referServices方法。 在这两个操作执行完毕之后&#xff0c;将会继续调…

电脑使用CDR时弹出错误“计算机丢失mfc140u.dll”是什么原因?“计算机丢失mfc140u.dll”要怎么解决?

电脑使用CDR时弹出“计算机丢失mfc140u.dll”错误&#xff1a;原因与解决方案 在日常电脑使用中&#xff0c;我们时常会遇到各种系统报错和文件丢失问题。特别是当我们使用某些特定软件&#xff0c;如CorelDRAW&#xff08;简称CDR&#xff09;时&#xff0c;可能会遇到“计算…

深入解读数据资产化实践指南(2024年)

本指南主要介绍了数据资产化的概念、目标和意义&#xff0c;以及实施数据资产化的过程。指南详细阐述了数据资产化的内涵&#xff0c;包括数据资产的定义、数据资产化的目标与意义&#xff0c;并介绍了数据资产化的过程包括业务数据化、数据资源化、数据产品化和数据资本化。 …

【算法篇】——数据结构中常见八大排序算法的过程原理详解

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、插入排序1.直接插入法2.希尔排序法 二、交换排序1. 冒泡排序2. 快速排序 三、选择排序1. 简单选择排序2. 堆排序 四、归并排序五、基数排序 前言 C数据结构…

仿闲鱼的二手交易小程序软件开发闲置物品回收平台系统源码

市场前景 闲置物品交易软件的市场前景广阔&#xff0c;主要基于以下几个方面的因素&#xff1a; 环保意识提升&#xff1a;随着人们环保意识的增强&#xff0c;越来越多的人开始关注资源的循环利用&#xff0c;闲置物品交易因此受到了广泛的关注。消费升级与时尚节奏加快&…

情报信息收集能力

红队专题-Web渗透之资产思路框架知识整理 钓鱼社工 钓鱼自动化zip域名ARP欺骗快捷方式ToolsburpsuiteApp 抓包ffuf模糊测试QingScanWiresharkCloudCFEn-Decodeffffffff0xInfodirbdirmapdirsearchdnsenum使用测试常规使用使用字典文件进行dns查询子域名暴力查询部分C类IP地址IP块…

ensp 关于acl的运用和讲解

ACL&#xff08;Access Control List&#xff0c;访问控制列表&#xff09;是一种常用于网络设备&#xff08;如路由器、交换机&#xff09;上的安全机制&#xff0c;用于控制数据包的流动与访问权限。ACL 可以指定哪些数据包允许进入或离开某个网络接口&#xff0c;基于不同的…

5、mysql的读写分离

主从复制 主从复制的含义 主从复制&#xff1a;在一个mysql的集群当中&#xff0c;至少3台&#xff0c;即主1台&#xff0c;从2台。 当有数据写入时&#xff0c;主负责写入本库&#xff0c;然后把数据同步到从服务器。 一定是在主服务器写入数据&#xff0c;从服务器的写入…