ICLR 2025 | 时间序列(Time Series)高分论文总结

ICLR2025已经结束了讨论阶段,进入了meta-review阶段,分数应该不会有太大的变化了,本文总结了其中时间序列(Time Series)高分的论文。如有疏漏,欢迎大家补充。

挑选原则:均分要大于等于6(≥6,即使有3,但是有8或者更高的分拉回来也算)

时间序列Topic:预测,插补,分类,生成,因果分析,异常检测,LLM以及基础模型(还有KAN和Mamba各一篇)等内容。总计32

在这里插入图片描述

  1. TimeMixer++: A General Time Series Pattern Machine for Universal Predictive Analysis
  2. Root Cause Analysis of Anomalies in Multivariate Time Series through Granger Causal Discovery
  3. Amortized Control of Continuous State Space Feynman-Kac Model for Irregular Time Series
  4. Time-MoE: Billion-Scale Time Series Foundation Models with Mixture of Experts
  5. Label Correlation Biases Direct Time Series Forecast
  6. Fast and Slow Streams for Online Time Series Forecasting Without Information Leakage
  7. Shifting the Paradigm: A Diffeomorphism Between Time Series Data Manifolds for Achieving Shift-Invariancy in Deep Learning
  8. Optimal Transport for Time Series Imputation
  9. Constrained Posterior Sampling: Time Series Generation with Hard Constraints
  10. A Simple Baseline for Multivariate Time Series Forecasting
  11. Shedding Light on Time Series Classification using Interpretability Gated Networks
  12. Multi-Resolution Decomposable Diffusion Model for Non-Stationary Time Series Anomaly Detection
  13. CATCH: Channel-Aware Multivariate Time Series Anomaly Detection via Frequency Patching
  14. CoMRes: Semi-Supervised Time Series Forecasting Utilizing Consensus Promotion of Multi-Resolution
  15. Towards Neural Scaling Laws for Time Series Foundation Models
  16. Quantifying Past Error Matters: Conformal Inference for Time Series
  17. TVNet: A Novel Time Series Analysis Method Based on Dynamic Convolution and 3D-Variation
  18. In-context Time Series Predictor
  19. Compositional simulation-based inference for time series
  20. Towards a General Time Series Anomaly Detector with Adaptive Bottlenecks and Dual Adversarial Decoders
  21. TimeKAN: KAN-based Frequency Decomposition Learning Architecture for Long-term Time Series Forecasting
  22. Investigating Pattern Neurons in Urban Time Series Forecasting
  23. Locally Connected Echo State Networks for Time Series Forecasting
  24. Diffusion-based Decoupled Deterministic and Uncertain Framework for Probabilistic Multivariate Time Series Forecasting
  25. TS-LIF: A Temporal Segment Spiking Neuron Network for Time Series Forecasting
  26. Exploring Representations and Interventions in Time Series Foundation Models
  27. FLDmamba: Integrating Fourier and Laplace Transform Decomposition with Mamba for Enhanced Time Series Prediction
  28. KooNPro: A Variance-Aware Koopman Probabilistic Model Enhanced by Neural Processes for Time Series Forecasting
  29. Context-Alignment: Activating and Enhancing LLMs Capabilities in Time Series
  30. TwinsFormer: Revisiting Inherent Dependencies via Two Interactive Components for Time Series Forecasting
  31. DyCAST: Learning Dynamic Causal Structure from Time Series
  32. Drift2Matrix: Kernel-Induced Self Representation for Concept Drift Adaptation in Co-evolving Time Series

🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅在这里插入图片描述

1 TimeMixer++: A General Time Series Pattern Machine for Universal Predictive Analysis

链接https://openreview.net/forum?id=1CLzLXSFNn

分数6810

关键词:多任务(预测,分类,插补,异常检测),基础模型

keywords:time series, pattern machine, predictive analysis

TL; DR:TimeMixer++ is a time series pattern machine that employs multi-scale and multi-resolution pattern extraction to deliver SOTA performance across 8 diverse analytical tasks, including forecasting, classification, anomaly detection, and imputation.

TimeMixer++

2 Root Cause Analysis of Anomalies in Multivariate Time Series through Granger Causal Discovery

链接https://openreview.net/forum?id=k38Th3x4d9

分数88888

关键词:因果发现

keywords:root cause analysis, Granger causality, multivariate time series

AERCA

3 Amortized Control of Continuous State Space Feynman-Kac Model for Irregular Time Series

链接https://openreview.net/forum?id=8zJRon6k5v

分数8888

关键词:变分推断,不规则时间序列,状态空间模型

keywords:stochastic optimal control, variational inference, state space model, irregular time series

TL; DR:We propose a multi-marginal Doob’s h h h-transform for irregular time series and variational inference with stochastic optimal control to approximate it.

在这里插入图片描述

4 Time-MoE: Billion-Scale Time Series Foundation Models with Mixture of Experts

链接https://openreview.net/forum?id=e1wDDFmlVu

分数688

关键词:预测,基础模型,混合专家系统

keywords:time series, foundation model, forecasting

在这里插入图片描述

5 Label Correlation Biases Direct Time Series Forecast

链接https://openreview.net/forum?id=4A9IdSa1ul

分数8686

关键词:长时预测,频域

keywords:Time series, Long-term Forecast

TL; DR:Learning to forecast in the frequency domain significantly enhances forecasting performance.

在这里插入图片描述

6 Fast and Slow Streams for Online Time Series Forecasting Without Information Leakage

链接https://openreview.net/forum?id=I0n3EyogMi

分数6688

关键词:在线预测,流式数据,概念飘逸

keywords:online time series forecasting, concept drift, online learning

TL; DR: Redefined the setting of online time series forecasting to prevent information leakage and proposed a model-agnostic framework for this setting.

在这里插入图片描述

7 Shifting the Paradigm: A Diffeomorphism Between Time Series Data Manifolds for Achieving Shift-Invariancy in Deep Learning

链接https://openreview.net/forum?id=nibeaHUEJx

分数6688

关键词:频域,平移不变性

keywords:Time series analysis, invariance in neural networks

在这里插入图片描述

8 Optimal Transport for Time Series Imputation

链接https://openreview.net/forum?id=xPTzjpIQNp

分数588

关键词:插补,最优传输

keywords:Time series, Imputation

在这里插入图片描述

9 Constrained Posterior Sampling: Time Series Generation with Hard Constraints

链接https://openreview.net/forum?id=pKMpmbuKnd

分数5688

关键词:时间序列生成,扩散模型

keywords:Time Series Generation, Posterior Sampling, Diffusion Models, Controlled Generation

在这里插入图片描述

10 A Simple Baseline for Multivariate Time Series Forecasting

链接https://openreview.net/forum?id=oANkBaVci5

分数5688

关键词:预测,小波变换

keywords:Time Series Forecasting, Wavelets

在这里插入图片描述

11 Shedding Light on Time Series Classification using Interpretability Gated Networks

链接https://openreview.net/forum?id=n34taxF0TC

分数56688

关键词:可解释性,Shapelet(特征提取)

keywords:Interpretability, Time-series, Shapelet

TL; DR: A framework to integrate interpretable models with deep neural networks for interpretable time-series classification.
在这里插入图片描述

12 Multi-Resolution Decomposable Diffusion Model for Non-Stationary Time Series Anomaly Detection

链接https://openreview.net/forum?id=eWocmTQn7H

分数6668

关键词:异常检测,多分辨率,扩散模型

keywords:Diffusion Model, Non-Stationary Time Series, Anomaly Detection, Multi-Resolution

TL; DR:This paper delves into the potential of multi-resolution technique and diffusion model for non-stationary time series anomaly detection, supported by rigorous mathematical proofs.

在这里插入图片描述

13 CATCH: Channel-Aware Multivariate Time Series Anomaly Detection via Frequency Patching

链接https://openreview.net/forum?id=m08aK3xxdJ

分数5668

关键词:异常检测,频域

keywords:Multivariate Time Series, Anomaly Detection

在这里插入图片描述

14 CoMRes: Semi-Supervised Time Series Forecasting Utilizing Consensus Promotion of Multi-Resolution

链接https://openreview.net/forum?id=bRa4JLPzii

分数5668

关键词:多尺度,半监督

keywords:Time series forecasting, Multi-scale, Semi-supervised learning

TL; DR:we propose a novel semi-supervised time series forecasting utilzing con

在这里插入图片描述

15 Towards Neural Scaling Laws for Time Series Foundation Models

链接https://openreview.net/forum?id=uCqxDfLYrB

分数5668

keywords:Time series, scaling law, foundation model, transformer, forecasting

在这里插入图片描述

16 Quantifying Past Error Matters: Conformal Inference for Time Series

链接https://openreview.net/forum?id=RD9q5vEe1Q

分数5668

关键词:不确定性量化,分布偏移

keywords:Time Series; Uncertainty Quantification; Conformal Prediction; Distribution Shift

17 TVNet: A Novel Time Series Analysis Method Based on Dynamic Convolution and 3D-Variation

链接https://openreview.net/forum?id=MZDdTzN6Cy

分数5668

关键词:卷积

keywords:Time series Analysis, Dynamic convolution, Deep Learning

TL; DR:New time series modeling perspective based 3D-variation and new analysis framework based dynamic convolution

在这里插入图片描述

18 In-context Time Series Predictor

链接https://openreview.net/forum?id=dCcY2pyNIO

分数3668

关键词:预测,上下文学习

keywords:Time Series Forecasting, In-context Learning, Transformer

在这里插入图片描述

19 Compositional simulation-based inference for time series

链接https://openreview.net/forum?id=uClUUJk05H

分数566668

关键词:贝叶斯推断

keywords:Simulation-based inference, Bayesian inference, time series, markovian simulators, Amortized Bayesian inference

在这里插入图片描述

20 Towards a General Time Series Anomaly Detector with Adaptive Bottlenecks and Dual Adversarial Decoders

链接https://openreview.net/forum?id=aKcd7ImG5e

分数6666

关键词:异常检测

keywords:Time series, Anomaly detection

TL; DR:We propose a general time series anomaly detection model that is pre-trained on multi-domain datasets and can subsequently apply to many downstream scenarios

在这里插入图片描述

21 TimeKAN: KAN-based Frequency Decomposition Learning Architecture for Long-term Time Series Forecasting

链接https://openreview.net/forum?id=wTLc79YNbh

分数3588

关键词:预测,KAN

keywords:kolmogorov-Arnold Network; Time Series Forecasting

在这里插入图片描述

22 Investigating Pattern Neurons in Urban Time Series Forecasting

链接https://openreview.net/forum?id=a9vey6B54y

分数6666

关键词:时空预测(更像是),城市时间序列预测模型

keywords:urban time series forecasting, neuron detection

PN-Train

23 Locally Connected Echo State Networks for Time Series Forecasting

链接https://openreview.net/forum?id=KeRwLLwZaw

分数6666

关键词:回声状态网络

keywords:Time Series Analysis, Time Series Forecasting, Recurrent Networks, Regression, Echo State Networks

TL; DR: Improved locally connected ESN method comparable with state-of-the-art on real-world time series datasets.

在这里插入图片描述

24 Diffusion-based Decoupled Deterministic and Uncertain Framework for Probabilistic Multivariate Time Series Forecasting

链接https://openreview.net/forum?id=HdUkF1Qk7g

分数6666

关键词:长时预测,扩散模型

keywords:long-term time series forecasting, deep learning, diffusion model

D^3U

25 TS-LIF: A Temporal Segment Spiking Neuron Network for Time Series Forecasting

链接https://openreview.net/forum?id=rDe9yQQYKt

分数666

关键词:脉冲神经网络

keywords:spiking neural network, time series forecasting, Application

TL; DR:We proposed a Temporal Segment Spiking Neuron Network (TS-LIF) for multivariate time series forecasting, supported by stability analysis and frequency response analysis to demonstrate its effectiveness and efficiency.

在这里插入图片描述

26 Exploring Representations and Interventions in Time Series Foundation Models

链接https://openreview.net/forum?id=IRL9wUiwab

分数6666

keywords:Time Series Foundation Models, Model Steering, Interpretability, Pruning

TL; DR:We investigate why time series foundation models work, the kinds of concepts that these models learn, and how can these concepts be manipulated to influence their outputs?

在这里插入图片描述

27 FLDmamba: Integrating Fourier and Laplace Transform Decomposition with Mamba for Enhanced Time Series Prediction

链接https://openreview.net/forum?id=9EiWIyJMNi

分数556668

关键词:Mamba,FFT

keywords:Mamba; Time Series Prediction

在这里插入图片描述

28 KooNPro: A Variance-Aware Koopman Probabilistic Model Enhanced by Neural Processes for Time Series Forecasting

链接https://openreview.net/forum?id=5oSUgTzs8Y

分数66666

keywords:Probabilistic time series prediction; Neural Process; Deep Koopman model

在这里插入图片描述

29 Context-Alignment: Activating and Enhancing LLMs Capabilities in Time Series

链接https://openreview.net/forum?id=syC2764fPc

分数6666

keywords:Time Series, Large Language Models, Context-Alignment

TL; DR:LLMs for time series tasks

在这里插入图片描述

30 TwinsFormer: Revisiting Inherent Dependencies via Two Interactive Components for Time Series Forecasting

链接https://openreview.net/forum?id=BSsyY29bcl

分数55568

keywords:Inherent Dependencies, Interactive Components, Time Series Forecasting

TL; DR:A novel Transformer-and decomposition-based framework using residual and interactive learning for time series forecasting.

在这里插入图片描述

31 DyCAST: Learning Dynamic Causal Structure from Time Series

链接https://openreview.net/forum?id=WjDjem8mWE

分数3668

关键词

TL; DR:dynamic causal discovery; time series

在这里插入图片描述

32 Drift2Matrix: Kernel-Induced Self Representation for Concept Drift Adaptation in Co-evolving Time Series

链接https://openreview.net/forum?id=prSJlvWrgE

分数3866

TL; DR:co-evolving time series, concept drift, kernel representation learning

在这里插入图片描述

相关链接

ICLR 2025 OpenReview:https://openreview.net/group?id=ICLR.cc/2025/Conference#tab-active-submissions

ICLR 2025分数统计:https://papercopilot.com/statistics/iclr-statistics/iclr-2025-statistics/

🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/940577.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SpringBoot集成ENC对配置文件进行加密

在线MD5生成工具 配置文件加密&#xff0c;集成ENC 引入POM依赖 <!-- ENC配置文件加密 --><dependency><groupId>com.github.ulisesbocchio</groupId><artifactId>jasypt-spring-boot-starter</artifactId><version>2.1.2</ver…

ASP.NET|日常开发中数据集合详解

ASP.NET&#xff5c;日常开发中数据集合详解 前言一、数组&#xff08;Array&#xff09;1.1 定义和基本概念1.2 数组的操作 二、列表&#xff08;List<T>&#xff09;2.1 特点和优势2.2 常用操作 三、字典&#xff08;Dictionary<K, V>&#xff09;3.1 概念和用途…

金融信息系统多活技术-应用策略

目录 概述 ​编辑 多活应用场景 流水型系统 账户型系统 流水型系统应用策略 业务模型说明 系统并行策略 接入和路由策略 系列阅读 概述 本文件提出了金融信息系统多活技术的应用指南&#xff0c;金融机构可根据自身业务需要&#xff0c;结合本文件进行 多活信息系统的…

大数据之Hbase环境安装

Hbase软件版本下载地址&#xff1a; http://mirror.bit.edu.cn/apache/hbase/ 1. 集群环境 Master 172.16.11.97 Slave1 172.16.11.98 Slave2 172.16.11.99 2. 下载软件包 #Master wget http://archive.apache.org/dist/hbase/0.98.24/hbase-0.98.24-hadoop1-bin.tar.gz…

人工智能ACA(四)--机器学习基础

零、参考资料 一篇文章完全搞懂正则化&#xff08;Regularization&#xff09;-CSDN博客 一、 机器学习概述 0. 机器学习的层次结构 学习范式&#xff08;最高层&#xff09; 怎么学 监督学习 无监督学习 半监督学习 强化学习 学习任务&#xff08;中间层&#xff0…

HTML语法规范

HTML语法规则 HTML 标签是由尖括号包围的关键词&#xff0c;标签通常是成对出现的&#xff0c;例如 <html> 和 </html>&#xff0c;称为双标签 。标签对中的第一个标签是开始标签&#xff0c;第二个标签是结束标签单标签比较少&#xff0c;例如<br />&#x…

四川托普信息技术职业学院教案1

四川托普信息技术职业学院教案 【计科系】 周次 第 1周&#xff0c;第1次课 备 注 章节名称 第1章 XML语言简介 引言 1.1 HTML与标记语言 1.2 XML的来源 1.3 XML的制定目标 1.4 XML概述 1.5 有了HTML了&#xff0c;为什么还要发展XML 1.5.1 HTML的缺点 1.5.2 XML的特点 1.6 X…

Win10将WindowsTerminal设置默认终端并添加到右键(无法使用微软商店)

由于公司内网限制&#xff0c;无法通过微软商店安装 Windows Terminal&#xff0c;本指南提供手动安装和配置新版 Windows Terminal 的步骤&#xff0c;并添加右键菜单快捷方式。 1. 下载新版终端安装包: 访问 Windows Terminal 的 GitHub 发布页面&#xff1a;https://githu…

OpenAI发布新一代推理模型O3和O3 Mini:能力与性能的双重突破

2024年12月21日&#xff0c;OpenAI通过一场特别活动正式宣布了其新一代推理模型O3及其轻量化版本O3 Mini。这标志着AI推理能力和效率的又一次飞跃。本文将围绕发布会中的关键内容&#xff0c;详细介绍O3和O3 Mini的核心能力、性能表现、以及面向公众安全测试的相关计划。 1. 背…

VScode插件之get、set函数自动生成

文章目录 VScode插件之get、set函数自动生成插件名称现有功能功能快捷键使用总结与部分插件的get、set生成对比部分实现效果展示部分实现思路 VScode插件之get、set函数自动生成 初次尝试插件的编写开发&#xff0c;这篇博客也是对自己成果的一个记录&#xff0c;如有不足请指…

【Lua热更新】上篇

Lua 热更新 - 上篇 下篇链接&#xff1a;【Lua热更新】下篇 文章目录 Lua 热更新 - 上篇一、AssetBundle1.理论2. AB包资源加载 二、Lua 语法1. 简单数据类型2.字符串操作3.运算符4.条件分支语句5.循环语句6.函数7. table数组8.迭代器遍历9.复杂数据类型 - 表9.1字典9.2类9.3…

完全二叉树的权值(蓝桥杯2019年试题G)

给定一棵包含N个节点的完全二叉树&#xff0c;树上的每个节点都有一个权值&#xff0c;按从上到小、从左到右的顺序依次是A1、A2……An,&#xff08;1&#xff0c;2&#xff0c;n为下标。&#xff09;如下图所示。 现在&#xff0c;小明要把相同深度的节点的权值加到一起&#…

时间管理系统|Java|SSM|JSP|

【技术栈】 1⃣️&#xff1a;架构: B/S、MVC 2⃣️&#xff1a;系统环境&#xff1a;Windowsh/Mac 3⃣️&#xff1a;开发环境&#xff1a;IDEA、JDK1.8、Maven、Mysql5.7 4⃣️&#xff1a;技术栈&#xff1a;Java、Mysql、SSM、Mybatis-Plus、JSP、jquery,html 5⃣️数据库可…

前端yarn工具打包时网络连接问题排查与解决

最近线上前端打包时提示 “There appears to be trouble with your network connection”&#xff0c;以此文档记录下排查过程。 前端打包方式 docker启动临时容器打包&#xff0c;命令如下 docker run --rm -w /app -v pwd:/app alpine-node-common:v16.20-pro sh -c "…

harmony UI组件学习(1)

Image 图片组件 string格式&#xff0c;通常用来加载网络图片&#xff0c;需要申请网络访问权限:ohos.permission.INTERNET Image(https://xxx.png) PixelMap格式&#xff0c;可以加载像素图&#xff0c;常用在图片编辑中 Image(pixelMapobject) Resource格式&#xff0c;加…

mac 安装graalvm

Download GraalVM 上面链接选择jdk的版本 以及系统的环境下载graalvm的tar包 解压tar包 tar -xzf graalvm-jdk-<version>_macos-<architecture>.tar.gz 移入java的文件夹目录 sudo mv graalvm-jdk-<version> /Library/Java/JavaVirtualMachines 设置环境变…

14-zookeeper环境搭建

0、环境 java&#xff1a;1.8zookeeper&#xff1a;3.5.6 1、下载 zookeeper下载点击这里。 2、安装 下载完成后解压&#xff0c;放到你想放的目录里。先看一下zookeeper的目录结构&#xff0c;如下图&#xff1a; 进入conf目录&#xff0c;复制zoo_sample.cfg&#xff0…

如何使用Python处理视频合成

使用 Python 处理视频合成可借助 MoviePy 库&#xff0c;以下是具体步骤&#xff1a; 安装 MoviePy 通过 pip 命令安装&#xff0c;即 pip install moviepy&#xff0c;需确保已安装 ffmpeg&#xff0c;并正确设置环境变量&#xff0c;因为 MoviePy 依赖它来处理视频. 基本合…

存储过程 与 存储函数的区别及用法 及 触发器 !!!

引言&#xff1a; 存储函数和存储过程&#xff0c;作为数据库中的预编译代码块&#xff0c;能够封装复杂的业务逻辑和数据处理流程&#xff0c;使得数据库操作更加简洁、易读和可维护。而触发器&#xff0c;则像是一个智能的守卫&#xff0c;能够在特定事件发生时自动执行预设的…

用nginx部署两个前端(超简单,三步!)

1.首先在nginx的html目录下创两个文件夹分别用于放两个前端打包好的静态资源&#xff0c;并且把静态资源各自放好&#xff1a; 2. 在nginx的配置文件里&#xff0c;写好两个server。如图&#xff0c;写好两个前端要用的端口以及刚才那两文件夹的路径&#xff1a; worker_proces…