前言
本篇博客我们来用哈希表模拟实现一下STL库里的unordered_map与unordered_set
💓 个人主页:小张同学zkf
⏩ 文章专栏:C++
若有问题 评论区见📝
🎉欢迎大家点赞👍收藏⭐文章
目录
1.源码及框架分析
2.模拟实现unordered_map和unordered_set
2.1实现出复⽤哈希表的框架,并⽀持insert
2.2⽀持iterator的实现
2.3map⽀持[]
2.4unordered_map和unordered_set代码实现
1.源码及框架分析
SGI-STL30版本源代码中没有unordered_map和unordered_set,SGI-STL30版本是C++11之前的STL版本,这两个容器是C++11之后才更新的。但是SGI-STL30实现了哈希表,只容器的名字是hash_map和hash_set,他是作为⾮标准的容器出现的,⾮标准是指⾮C++标准规定必须实现的,源代码在hash_map/hash_set/stl_hash_map/stl_hash_set/stl_hashtable.h中hash_map和hash_set的实现结构框架核⼼部分截取出来如下:
// stl_hash_settemplate < class Value , class HashFcn = hash<Value>,class EqualKey = equal_to<Value>,class Alloc = alloc>class hash_set{private :typedef hashtable<Value, Value, HashFcn, identity<Value>,EqualKey, Alloc> ht;ht rep;public :typedef typename ht::key_type key_type;typedef typename ht::value_type value_type;typedef typename ht::hasher hasher;typedef typename ht::key_equal key_equal;typedef typename ht::const_iterator iterator;typedef typename ht::const_iterator const_iterator;hasher hash_funct () const { return rep. hash_funct (); }key_equal key_eq () const { return rep. key_eq (); }};// stl_hash_maptemplate < class Key , class T , class HashFcn = hash<Key>,class EqualKey = equal_to<Key>,class Alloc = alloc>class hash_map{private :typedef hashtable<pair< const Key, T>, Key, HashFcn,select1st<pair< const Key, T> >, EqualKey, Alloc> ht;ht rep;public :typedef typename ht::key_type key_type;typedef T data_type;typedef T mapped_type;typedef typename ht::value_type value_type;typedef typename ht::hasher hasher;typedef typename ht::key_equal key_equal;typedef typename ht::iterator iterator;typedef typename ht::const_iterator const_iterator;};// stl_hashtable.htemplate < class Value , class Key , class HashFcn ,class ExtractKey , class EqualKey ,class Alloc >class hashtable {public :typedef Key key_type;typedef Value value_type;typedef HashFcn hasher;typedef EqualKey key_equal;private :hasher hash;key_equal equals;ExtractKey get_key;typedef __hashtable_node<Value> node;vector<node*,Alloc> buckets;size_type num_elements;public :typedef __hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey,Alloc> iterator;pair<iterator, bool > insert_unique ( const value_type& obj);const_iterator find ( const key_type& key) const ;};template < class Value >struct __hashtable_node{__hashtable_node* next;Value val;};
这⾥我们就不再画图分析了,通过源码可以看到,结构上hash_map和hash_set跟map和set的完
全类似,复⽤同⼀个hashtable实现key和key/value结构,hash_set传给hash_table的是两个
key,hash_map传给hash_table的是pair<const key, value>
需要注意的是源码⾥⾯跟map/set源码类似,命名⻛格⽐较乱,这⾥⽐map和set还乱,hash_set
模板参数居然⽤的Value命名,hash_map⽤的是Key和T命名,可⻅⼤佬有时写代码也不规范,乱
弹琴。下⾯我们模拟⼀份⾃⼰的出来,就按⾃⼰的⻛格⾛了。
2.模拟实现unordered_map和unordered_set
2.1实现出复⽤哈希表的框架,并⽀持insert
参考源码框架,unordered_map和unordered_set复⽤之前我们实现的哈希表。
我们这⾥相⽐源码调整⼀下,key参数就⽤K,value参数就⽤V,哈希表中的数据类型,我们使⽤
T。
其次跟map和set相⽐⽽⾔unordered_map和unordered_set的模拟实现类结构更复杂⼀点,但是
⼤框架和思路是完全类似的。因为HashTable实现了泛型不知道T参数导致是K,还是pair<K, V>,
那么insert内部进⾏插⼊时要⽤K对象转换成整形取模和K⽐较相等,因为pair的value不参与计算取
模,且默认⽀持的是key和value⼀起⽐较相等,我们需要时的任何时候只需要⽐较K对象,所以我
们在unordered_map和unordered_set层分别实现⼀个MapKeyOfT和SetKeyOfT的仿函数传给
HashTable的KeyOfT,然后HashTable中通过KeyOfT仿函数取出T类型对象中的K对象,再转换成
整形取模和K⽐较相等,具体细节参考如下代码实现。
// MyUnorderedSet.h
namespace zkf
{
template<class K, class Hash = HashFunc<K>>
class unordered_set
{
struct SetKeyOfT
{
const K& operator()(const K& key)
{
return key;
}
};
public:
bool insert(const K& key)
{
return _ht.Insert(key);
}
private:
hash_bucket::HashTable<K, K, SetKeyOfT, Hash> _ht;
};
}
// MyUnorderedMap.h
namespace zkf
{
template<class K, class V, class Hash = HashFunc<K>>
class unordered_map
{
struct MapKeyOfT
{
const K& operator()(const pair<K, V>& kv)
{
return kv.first;
}
};
public:
bool insert(const pair<K, V>& kv)
{
return _ht.Insert(kv);
}
private:
hash_bucket::HashTable<K, pair<K, V>, MapKeyOfT, Hash> _ht;
};
}
// HashTable.h
template<class K>
struct HashFunc
{
size_t operator()(const K& key)
{
return (size_t)key;
}
};
namespace hash_bucket
{
template<class T>
struct HashNode
{
T _data;
HashNode<T>* _next;
HashNode(const T& data)
:_data(data)
,_next(nullptr)
{}
};
// 实现步骤:
// 1、实现哈希表
// 2、封装unordered_map和unordered_set的框架 解决KeyOfT
// 3、iterator
// 4、const_iterator
// 5、key不⽀持修改的问题
// 6、operator[]
template<class K, class T, class KeyOfT, class Hash>
class HashTable
{
typedef HashNode<T> Node;
inline unsigned long __stl_next_prime(unsigned long n)
{
static const int __stl_num_primes = 28;
static const unsigned long __stl_prime_list[__stl_num_primes] =
{
53, 97, 193, 389, 769,
1543, 3079, 6151, 12289, 24593,
49157, 98317, 196613, 393241, 786433,
1572869, 3145739, 6291469, 12582917, 25165843,
50331653, 100663319, 201326611, 402653189, 805306457,
1610612741, 3221225473, 4294967291
};
const unsigned long* first = __stl_prime_list;
const unsigned long* last = __stl_prime_list +
__stl_num_primes;
const unsigned long* pos = lower_bound(first, last, n);
return pos == last ? *(last - 1) : *pos;
}
public:
HashTable()
{
_tables.resize(__stl_next_prime(_tables.size()), nullptr);
}
~HashTable()
{
// 依次把每个桶释放
for (size_t i = 0; i < _tables.size(); i++)
{
Node* cur = _tables[i];
while (cur)
{
Node* next = cur->_next;
delete cur;
cur = next;
}
_tables[i] = nullptr;
}
}
bool Insert(const T& data)
{
KeyOfT kot;
if (Find(kot(data)))
return false;
Hash hs;
size_t hashi = hs(kot(data)) % _tables.size();
// 负载因⼦==1扩容
if (_n == _tables.size())
{
vector<Node*> newtables(__stl_next_prime(_tables.size()),
nullptr);
for (size_t i = 0; i < _tables.size(); i++)
{
Node* cur = _tables[i];
while (cur)
{
Node* next = cur->_next;
// 旧表中结点,挪动新表重新映射的位置
size_t hashi = hs(kot(cur->_data)) %
newtables.size();
// 头插到新表
cur->_next = newtables[hashi];
newtables[hashi] = cur;
cur = next;
}
_tables[i] = nullptr;
}
_tables.swap(newtables);
}
// 头插
Node* newnode = new Node(data);
newnode->_next = _tables[hashi];
_tables[hashi] = newnode;
++_n;
return true;
}
private:
vector<Node*> _tables; // 指针数组
size_t _n = 0; // 表中存储数据个数
};
}
2.2⽀持iterator的实现
iterator核⼼源代码
template < class Value , class Key , class HashFcn ,class ExtractKey , class EqualKey , class Alloc >struct __hashtable_iterator {typedef hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>hashtable;typedef __hashtable_iterator<Value, Key, HashFcn,ExtractKey, EqualKey, Alloc>iterator;typedef __hashtable_const_iterator<Value, Key, HashFcn,ExtractKey, EqualKey, Alloc>const_iterator;typedef __hashtable_node<Value> node;typedef forward_iterator_tag iterator_category;typedef Value value_type;node* cur;hashtable* ht;__hashtable_iterator(node* n, hashtable* tab) : cur (n), ht (tab) {}__hashtable_iterator() {}reference operator *() const { return cur->val; }# ifndef __SGI_STL_NO_ARROW_OPERATORpointer operator ->() const { return &( operator *()); }# endif /* __SGI_STL_NO_ARROW_OPERATOR */iterator& operator ++();iterator operator ++( int );bool operator ==( const iterator& it) const { return cur == it.cur; }bool operator !=( const iterator& it) const { return cur != it.cur; }};template < class V , class K , class HF , class ExK , class EqK , class A >__hashtable_iterator<V, K, HF, ExK, EqK, A>&__hashtable_iterator<V, K, HF, ExK, EqK, A>:: operator ++(){const node* old = cur;cur = cur->next;if (!cur) {size_type bucket = ht-> bkt_num (old->val);while (!cur && ++bucket < ht->buckets. size ())cur = ht->buckets[bucket];}return * this ;}
iterator实现思路分析
iterator实现的⼤框架跟list的iterator思路是⼀致的,⽤⼀个类型封装结点的指针,再通过重载运算
符实现,迭代器像指针⼀样访问的⾏为,要注意的是哈希表的迭代器是单向迭代器。
这⾥的难点是operator++的实现。iterator中有⼀个指向结点的指针,如果当前桶下⾯还有结点,
则结点的指针指向下⼀个结点即可。如果当前桶⾛完了,则需要想办法计算找到下⼀个桶。这⾥的
难点是反⽽是结构设计的问题,参考上⾯的源码,我们可以看到iterator中除了有结点的指针,还
有哈希表对象的指针,这样当前桶⾛完了,要计算下⼀个桶就相对容易多了,⽤key值计算出当前
桶位置,依次往后找下⼀个不为空的桶即可。
begin()返回第⼀个桶中第⼀个节点指针构造的迭代器,这⾥end()返回迭代器可以⽤空表⽰。
unordered_set的iterator也不⽀持修改,我们把unordered_set的第⼆个模板参数改成const K即
可,
HashTable<K,
const K
, SetKeyOfT, Hash> _ht;
unordered_map的iterator不⽀持修改key但是可以修改value,我们把unordered_map的第⼆个
模板参数pair的第⼀个参数改成const K即可,
HashTable<K,
pair<const K, V>
,
MapKeyOfT, Hash> _ht;
⽀持完整的迭代器还有很多细节需要修改,具体参考下⾯题的代码。
2.3map⽀持[]
unordered_map要⽀持[]主要需要修改insert返回值⽀持,修改HashTable中的insert返回值为
pair<Iterator, bool> Insert(const T& data)
有了insert⽀持[]实现就很简单了,具体参考下⾯代码实现
2.4unordered_map和unordered_set代码实现
// MyUnorderedSet.h
namespace zkf
{
template<class K, class Hash = HashFunc<K>>
class unordered_set
{
struct SetKeyOfT
{
const K& operator()(const K& key)
{
return key;
}
};
public:
typedef typename hash_bucket::HashTable<K, const K, SetKeyOfT,
Hash>::Iterator iterator;
typedef typename hash_bucket::HashTable<K, const K, SetKeyOfT,
Hash>::ConstIterator const_iterator;
iterator begin()
{
return _ht.Begin();
}
iterator end()
{
return _ht.End();
}
const_iterator begin() const
{
return _ht.Begin();
}
const_iterator end() const
{
return _ht.End();
}
pair<iterator, bool> insert(const K& key)
{
return _ht.Insert(key);
}
iterator Find(const K& key)
{
return _ht.Find(key);
}
bool Erase(const K& key)
{
return _ht.Erase(key);
}
private:
hash_bucket::HashTable<K, const K, SetKeyOfT, Hash> _ht;
};
void test_set()
{
unordered_set<int> s;
int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14, 3,3,15 };
for (auto e : a)
{
s.insert(e);
}
for (auto e : s)
{
cout << e << " ";
}
cout << endl;
unordered_set<int>::iterator it = s.begin();
while (it != s.end())
{
// 不⽀持修改
//*it += 1;
cout << *it << " ";
++it;
}
cout << endl;
}
}
// MyUnorderedMap.h
namespace zkf
{
template<class K, class V, class Hash = HashFunc<K>>
class unordered_map
{
struct MapKeyOfT
{
const K& operator()(const pair<K, V>& kv)
{
return kv.first;
}
};
public:
typedef typename hash_bucket::HashTable<K, pair<const K, V>,
MapKeyOfT, Hash>::Iterator iterator;
typedef typename hash_bucket::HashTable<K, pair<const K, V>,
MapKeyOfT, Hash>::ConstIterator const_iterator;
iterator begin()
{
return _ht.Begin();
}
iterator end()
{
return _ht.End();
}
const_iterator begin() const
{
return _ht.Begin();
}
const_iterator end() const
{
return _ht.End();
}
pair<iterator, bool> insert(const pair<K, V>& kv)
{
return _ht.Insert(kv);
}
V& operator[](const K& key)
{
pair<iterator, bool> ret = _ht.Insert(make_pair(key, V()));
return ret.first->second;
}
iterator Find(const K& key)
{
return _ht.Find(key);
}
bool Erase(const K& key)
{
return _ht.Erase(key);
}
private:
hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT, Hash> _ht;
};
void test_map()
{
unordered_map<string, string> dict;
dict.insert({ "sort", "排序" });
dict.insert({ "left", "左边" });
dict.insert({ "right", "右边" });
dict["left"] = "左边,剩余";
dict["insert"] = "插⼊";
dict["string"];
unordered_map<string, string>::iterator it = dict.begin();
while (it != dict.end())
{
// 不能修改first,可以修改second
//it->first += 'x';
it->second += 'x';
cout << it->first << ":" << it->second << endl;
++it;
}
cout << endl;
}
}
// HashTable.h
template<class K>
struct HashFunc
{
size_t operator()(const K& key)
{
return (size_t)key;
}
};
// 特化
template<>
struct HashFunc<string>
{
size_t operator()(const string& key)
{
size_t hash = 0;
for (auto e : key)
{
hash *= 131;
hash += e;
}
return hash;
}
};
namespace hash_bucket
{
template<class T>
struct HashNode
{
T _data;
HashNode<T>* _next;
HashNode(const T& data)
:_data(data)
,_next(nullptr)
{}
};
// 前置声明
template<class K, class T, class KeyOfT, class Hash>
class HashTable;
template<class K, class T, class Ptr, class Ref, class KeyOfT, class Hash>
struct HTIterator
{
typedef HashNode<T> Node;
typedef HTIterator<K, T, Ptr, Ref, KeyOfT, Hash> Self;
Node* _node;
const HashTable<K, T, KeyOfT, Hash>* _pht;
HTIterator(Node* node, const HashTable<K, T, KeyOfT, Hash>* pht)
:_node(node)
,_pht(pht)
{}
Ref operator*()
{
return _node->_data;
}
Ptr operator->()
{
return &_node->_data;
}
bool operator!=(const Self& s)
{
return _node != s._node;
}
Self& operator++()
{
if (_node->_next)
{
// 当前桶还有节点
_node = _node->_next;
}
else
{
// 当前桶⾛完了,找下⼀个不为空的桶
KeyOfT kot;
Hash hs;
size_t hashi = hs(kot(_node->_data)) % _pht-
>_tables.size();
++hashi;
while (hashi < _pht->_tables.size())
{
if (_pht->_tables[hashi])
{
break;
}
++hashi;
}
if (hashi == _pht->_tables.size())
{
_node = nullptr; // end()
}
else
{
_node = _pht->_tables[hashi];
}
}
return *this;
}
};
template<class K, class T, class KeyOfT, class Hash>
class HashTable
{
// 友元声明
template<class K, class T, class Ptr, class Ref, class KeyOfT, class
Hash>
friend struct HTIterator;
typedef HashNode<T> Node;
public:
typedef HTIterator<K, T, T*, T&, KeyOfT, Hash> Iterator;
typedef HTIterator<K, T, const T*, const T&, KeyOfT, Hash>
ConstIterator;
Iterator Begin()
{
if (_n == 0)
return End();
for (size_t i = 0; i < _tables.size(); i++)
{
Node* cur = _tables[i];
if (cur)
{
return Iterator(cur, this);
}
}
return End();
}
Iterator End()
{
return Iterator(nullptr, this);
}
ConstIterator Begin() const
{
if (_n == 0)
return End();
for (size_t i = 0; i < _tables.size(); i++)
{
Node* cur = _tables[i];
if (cur)
{
return ConstIterator(cur, this);
}
}
return End();
}
ConstIterator End() const
{
return ConstIterator(nullptr, this);
}
inline unsigned long __stl_next_prime(unsigned long n)
{
static const int __stl_num_primes = 28;
static const unsigned long __stl_prime_list[__stl_num_primes] =
{
53, 97, 193, 389, 769,
1543, 3079, 6151, 12289, 24593,
49157, 98317, 196613, 393241, 786433,
1572869, 3145739, 6291469, 12582917, 25165843,
50331653, 100663319, 201326611, 402653189, 805306457,
1610612741, 3221225473, 4294967291
};
const unsigned long* first = __stl_prime_list;
const unsigned long* last = __stl_prime_list +
__stl_num_primes;
const unsigned long* pos = lower_bound(first, last, n);
return pos == last ? *(last - 1) : *pos;
}
HashTable()
{
_tables.resize(__stl_next_prime(_tables.size()), nullptr);
}
~HashTable()
{
// 依次把每个桶释放
for (size_t i = 0; i < _tables.size(); i++)
{
Node* cur = _tables[i];
while (cur)
{
Node* next = cur->_next;
delete cur;
cur = next;
}
_tables[i] = nullptr;
}
}
pair<Iterator, bool> Insert(const T& data)
{
KeyOfT kot;
Iterator it = Find(kot(data));
if (it != End())
return make_pair(it, false);
Hash hs;
size_t hashi = hs(kot(data)) % _tables.size();
// 负载因⼦==1扩容
if (_n == _tables.size())
{
vector<Node*>
newtables(__stl_next_prime(_tables.size()), nullptr);
for (size_t i = 0; i < _tables.size(); i++)
{
Node* cur = _tables[i];
while (cur)
{
Node* next = cur->_next;
// 旧表中节点,挪动新表重新映射的位置
size_t hashi = hs(kot(cur->_data)) %
newtables.size();
// 头插到新表
cur->_next = newtables[hashi];
newtables[hashi] = cur;
cur = next;
}
_tables[i] = nullptr;
}
_tables.swap(newtables);
}
// 头插
Node* newnode = new Node(data);
newnode->_next = _tables[hashi];
_tables[hashi] = newnode;
++_n;
return make_pair(Iterator(newnode, this), true);
}
Iterator Find(const K& key)
{
KeyOfT kot;
Hash hs;
size_t hashi = hs(key) % _tables.size();
Node* cur = _tables[hashi];
while (cur)
{
if (kot(cur->_data) == key)
{
return Iterator(cur, this);
}
cur = cur->_next;
}
return End();
}
bool Erase(const K& key)
{
KeyOfT kot;
Hash hs;
size_t hashi = hs(key) % _tables .size();
Node* prev = nullptr;
Node* cur = _tables[hashi];
while (cur)
{
if (kot(cur->_data) == key)
{
if (prev == nullptr)
{
_tables[hashi] = cur->_next;
}
else
{
prev->_next = cur->_next;
}
delete cur;
--_n;
return true;
}
prev = cur;
cur = cur->_next;
}
return false;
}
private:
vector<Node*> _tables; // 指针数组
size_t _n = 0; // 表中存储数据个数
};
}
结束语
有关unordered_set和unordered_map包括哈希相关的知识已经全部总结完毕,结合前面两篇博客看哦