梯度(Gradient)和 雅各比矩阵(Jacobian Matrix)的区别和联系:中英双语

雅各比矩阵与梯度:区别与联系

在数学与机器学习中,梯度(Gradient)雅各比矩阵(Jacobian Matrix) 是两个核心概念。虽然它们都描述了函数的变化率,但应用场景和具体形式有所不同。本文将通过深入解析它们的定义、区别与联系,并结合实际数值模拟,帮助读者全面理解两者,尤其是雅各比矩阵在深度学习与大模型领域的作用。


1. 梯度与雅各比矩阵的定义

1.1 梯度(Gradient)

梯度是标量函数(输出是一个标量)的变化率的向量化表示。

设函数 ( f : R n → R f: \mathbb{R}^n \to \mathbb{R} f:RnR ),其梯度是一个 ( n n n )-维向量:
∇ f ( x ) = [ ∂ f ∂ x 1 ∂ f ∂ x 2 ⋮ ∂ f ∂ x n ] , \nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}, f(x)= x1fx2fxnf ,
表示在每个方向上 ( f f f ) 的变化率。

1.2 雅各比矩阵(Jacobian Matrix)

雅各比矩阵描述了向量函数(输出是一个向量)在输入点的变化率。

设函数 ( f : R n → R m \mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m f:RnRm ),即输入是 ( n n n )-维向量,输出是 ( m m m )-维向量,其雅各比矩阵为一个 ( m × n m \times n m×n ) 的矩阵:
D f ( x ) = [ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 ⋯ ∂ f 1 ∂ x n ∂ f 2 ∂ x 1 ∂ f 2 ∂ x 2 ⋯ ∂ f 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ f m ∂ x 1 ∂ f m ∂ x 2 ⋯ ∂ f m ∂ x n ] . Df(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}. Df(x)= x1f1x1f2x1fmx2f1x2f2x2fmxnf1xnf2xnfm .

  • 每一行是某个标量函数 ( f i ( x ) f_i(x) fi(x) ) 的梯度;
  • 雅各比矩阵描述了函数在各输入维度上的整体变化。

2. 梯度与雅各比矩阵的区别与联系

方面梯度雅各比矩阵
适用范围标量函数 ( f : R n → R f: \mathbb{R}^n \to \mathbb{R} f:RnR )向量函数 ( f : R n → R m f: \mathbb{R}^n \to \mathbb{R}^m f:RnRm )
形式一个 ( n n n )-维向量一个 ( m × n m \times n m×n ) 的矩阵
含义表示函数 ( f f f ) 在输入空间的变化率表示向量函数 ( f f f ) 的所有输出分量对所有输入变量的变化率
联系梯度是雅各比矩阵的特殊情况(当 ( m = 1 m = 1 m=1 ) 时,雅各比矩阵退化为梯度)梯度可以看作雅各比矩阵的行之一(当输出是标量时只有一行)

3. 数值模拟:梯度与雅各比矩阵

示例函数

假设有函数 ( f : R 2 → R 2 \mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2 f:R2R2 ),定义如下:
f ( x 1 , x 2 ) = [ x 1 2 + x 2 x 1 x 2 ] . \mathbf{f}(x_1, x_2) = \begin{bmatrix} x_1^2 + x_2 \\ x_1 x_2 \end{bmatrix}. f(x1,x2)=[x12+x2x1x2].

3.1 梯度计算(标量函数场景)

若我们关注第一个输出分量 ( f 1 ( x ) = x 1 2 + x 2 f_1(x) = x_1^2 + x_2 f1(x)=x12+x2 ),则其梯度为:
∇ f 1 ( x ) = [ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 ] = [ 2 x 1 1 ] . \nabla f_1(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} \\ \frac{\partial f_1}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 2x_1 \\ 1 \end{bmatrix}. f1(x)=[x1f1x2f1]=[2x11].

3.2 雅各比矩阵计算(向量函数场景)

对整个函数 ( f \mathbf{f} f ),其雅各比矩阵为:
D f ( x ) = [ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 ∂ f 2 ∂ x 1 ∂ f 2 ∂ x 2 ] = [ 2 x 1 1 x 2 x 1 ] . Df(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 2x_1 & 1 \\ x_2 & x_1 \end{bmatrix}. Df(x)=[x1f1x1f2x2f1x2f2]=[2x1x21x1].


3.3 Python 实现

以下代码演示了梯度和雅各比矩阵的数值计算:

import numpy as np

# 定义函数
def f(x):
    return np.array([x[0]**2 + x[1], x[0] * x[1]])

# 定义雅各比矩阵
def jacobian_f(x):
    return np.array([[2 * x[0], 1],
                     [x[1], x[0]]])

# 计算梯度和雅各比矩阵
x = np.array([1.0, 2.0])  # 输入点
gradient_f1 = np.array([2 * x[0], 1])  # f1 的梯度
jacobian = jacobian_f(x)  # 雅各比矩阵

print("Gradient of f1:", gradient_f1)
print("Jacobian matrix of f:", jacobian)

运行结果:

Gradient of f1: [2. 1.]
Jacobian matrix of f:
[[2. 1.]
 [2. 1.]]

4. 在机器学习和深度学习中的作用

4.1 梯度的作用

在深度学习中,梯度主要用于反向传播。当损失函数是标量时,其梯度指示了参数需要如何调整以最小化损失。例如:

  • 对于神经网络的参数 ( θ \theta θ ),损失函数 ( L ( θ ) L(\theta) L(θ) ) 的梯度 ( ∇ L ( θ ) \nabla L(\theta) L(θ) ) 用于优化器(如 SGD 或 Adam)更新参数。

4.2 雅各比矩阵的作用

  1. 多输出问题
    雅各比矩阵用于多任务学习和多输出模型(例如,Transformer 的输出是一个序列,维度为 ( m m m )),描述多个输出对输入的变化关系。

  2. 对抗样本生成
    在对抗攻击中,雅各比矩阵被用来计算输入的小扰动如何同时影响多个输出。

  3. 深度学习中的 Hessian-Free 方法
    雅各比矩阵是二阶优化方法(如 Newton 方法)中的重要组成部分,因为 Hessian 矩阵的计算通常依赖雅各比矩阵。

  4. 大模型推理与精调
    在大语言模型中,雅各比矩阵被用于研究模型对输入扰动的敏感性,或指导精调时的梯度裁剪与更新。


5. 总结

  • 梯度 是描述标量函数变化率的向量;
  • 雅各比矩阵 是描述向量函数所有输出对输入变化的矩阵;
  • 两者紧密相关:梯度是雅各比矩阵的特例。

在机器学习与深度学习中,梯度用于优化,雅各比矩阵在多任务学习、对抗训练和大模型分析中有广泛应用。通过数值模拟,我们可以直观理解它们的区别与联系,掌握它们在实际场景中的重要性。

英文版

Jacobian Matrix vs Gradient: Differences and Connections

In mathematics and machine learning, the gradient and the Jacobian matrix are essential concepts that describe the rate of change of functions. While they are closely related, they serve different purposes and are used in distinct scenarios. This blog will explore their definitions, differences, and connections through examples, particularly emphasizing the Jacobian matrix’s role in deep learning and large-scale models.


1. Definition of Gradient and Jacobian Matrix

1.1 Gradient

The gradient is a vector representation of the rate of change for a scalar-valued function.

For a scalar function ( f : R n → R f: \mathbb{R}^n \to \mathbb{R} f:RnR ), the gradient is an ( n n n )-dimensional vector:
∇ f ( x ) = [ ∂ f ∂ x 1 ∂ f ∂ x 2 ⋮ ∂ f ∂ x n ] . \nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}. f(x)= x1fx2fxnf .
This represents the direction and magnitude of the steepest ascent of ( f f f ).

1.2 Jacobian Matrix

The Jacobian matrix describes the rate of change for a vector-valued function.

For a vector function ( f : R n → R m \mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m f:RnRm ), where the input is ( n n n )-dimensional and the output is ( m m m )-dimensional, the Jacobian matrix is an ( m × n m \times n m×n ) matrix:
D f ( x ) = [ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 ⋯ ∂ f 1 ∂ x n ∂ f 2 ∂ x 1 ∂ f 2 ∂ x 2 ⋯ ∂ f 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ f m ∂ x 1 ∂ f m ∂ x 2 ⋯ ∂ f m ∂ x n ] . Df(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}. Df(x)= x1f1x1f2x1fmx2f1x2f2x2fmxnf1xnf2xnfm .

  • Each row is the gradient of a scalar function ( f i ( x ) f_i(x) fi(x) );
  • The Jacobian matrix encapsulates all partial derivatives of ( f \mathbf{f} f ) with respect to its inputs.

2. Differences and Connections Between Gradient and Jacobian Matrix

AspectGradientJacobian Matrix
ScopeScalar function ( f : R n → R f: \mathbb{R}^n \to \mathbb{R} f:RnR )Vector function ( f : R n → R m f: \mathbb{R}^n \to \mathbb{R}^m f:RnRm )
FormAn ( n n n )-dimensional vectorAn ( m × n m \times n m×n ) matrix
MeaningRepresents the rate of change of ( f f f ) in the input spaceRepresents the rate of change of all outputs w.r.t. all inputs
ConnectionThe gradient is a special case of the Jacobian (when ( m = 1 m = 1 m=1 ))Each row of the Jacobian matrix is a gradient of ( f i ( x ) f_i(x) fi(x) )

3. Numerical Simulation: Gradient and Jacobian Matrix

Example Function

Consider the function ( f : R 2 → R 2 \mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2 f:R2R2 ) defined as:
f ( x 1 , x 2 ) = [ x 1 2 + x 2 x 1 x 2 ] . \mathbf{f}(x_1, x_2) = \begin{bmatrix} x_1^2 + x_2 \\ x_1 x_2 \end{bmatrix}. f(x1,x2)=[x12+x2x1x2].

3.1 Gradient Computation (Scalar Function Case)

If we focus on the first output component ( f 1 ( x ) = x 1 2 + x 2 f_1(x) = x_1^2 + x_2 f1(x)=x12+x2 ), the gradient is:
∇ f 1 ( x ) = [ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 ] = [ 2 x 1 1 ] . \nabla f_1(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} \\ \frac{\partial f_1}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 2x_1 \\ 1 \end{bmatrix}. f1(x)=[x1f1x2f1]=[2x11].

3.2 Jacobian Matrix Computation (Vector Function Case)

For the full vector function ( f \mathbf{f} f ), the Jacobian matrix is:
D f ( x ) = [ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 ∂ f 2 ∂ x 1 ∂ f 2 ∂ x 2 ] = [ 2 x 1 1 x 2 x 1 ] . Df(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 2x_1 & 1 \\ x_2 & x_1 \end{bmatrix}. Df(x)=[x1f1x1f2x2f1x2f2]=[2x1x21x1].


3.3 Python Implementation

The following Python code demonstrates how to compute the gradient and Jacobian matrix numerically:

import numpy as np

# Define the function
def f(x):
    return np.array([x[0]**2 + x[1], x[0] * x[1]])

# Define the Jacobian matrix
def jacobian_f(x):
    return np.array([[2 * x[0], 1],
                     [x[1], x[0]]])

# Input point
x = np.array([1.0, 2.0])

# Compute the gradient of f1
gradient_f1 = np.array([2 * x[0], 1])  # Gradient of the first output component

# Compute the Jacobian matrix
jacobian = jacobian_f(x)

print("Gradient of f1:", gradient_f1)
print("Jacobian matrix of f:", jacobian)

Output:

Gradient of f1: [2. 1.]
Jacobian matrix of f:
[[2. 1.]
 [2. 1.]]

4. Applications in Machine Learning and Deep Learning

4.1 Gradient Applications

In deep learning, the gradient is critical for backpropagation. When the loss function is a scalar, its gradient indicates how to adjust the parameters to minimize the loss. For example:

  • For a neural network with parameters ( θ \theta θ ), the loss function ( L ( θ ) L(\theta) L(θ) ) has a gradient ( ∇ L ( θ ) \nabla L(\theta) L(θ) ), which is used by optimizers (e.g., SGD, Adam) to update the parameters.

4.2 Jacobian Matrix Applications

  1. Multi-Output Models
    The Jacobian matrix is essential for multi-task learning or models with multiple outputs (e.g., transformers where the output is a sequence). It describes how each input affects all outputs.

  2. Adversarial Examples
    In adversarial attacks, the Jacobian matrix helps compute how small perturbations in input affect multiple outputs simultaneously.

  3. Hessian-Free Methods
    In second-order optimization methods (e.g., Newton’s method), the Jacobian matrix is used to compute the Hessian matrix, which is crucial for convergence.

  4. Large Model Fine-Tuning
    For large language models, the Jacobian matrix is used to analyze how sensitive a model is to input perturbations, guiding techniques like gradient clipping or parameter-efficient fine-tuning (PEFT).


5. Summary

  • The gradient is a vector describing the rate of change of a scalar function, while the Jacobian matrix is a matrix describing the rate of change of a vector function.
  • The gradient is a special case of the Jacobian matrix (when there is only one output dimension).
  • In machine learning, gradients are essential for optimization, whereas Jacobian matrices are widely used in multi-output models, adversarial training, and fine-tuning large models.

Through numerical simulations and real-world applications, understanding the gradient and Jacobian matrix can significantly enhance your knowledge of optimization, deep learning, and large-scale model analysis.

后记

2024年12月19日15点30分于上海,在GPT4o大模型辅助下完成。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/939514.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深度学习革新音乐转录

✨✨ 欢迎大家来访Srlua的博文(づ ̄3 ̄)づ╭❤~✨✨ 🌟🌟 欢迎各位亲爱的读者,感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢,在这里我会分享我的知识和经验。&am…

Flink2.0未来趋势中需要注意的一些问题

手机打字,篇幅不长,主要讲一下FFA中关于Flink2.0的未来趋势,直接看重点。 Flink Forward Asia 2024主会场有一场关于Flink2.0的演讲,很精彩,官方也发布了一些关于Flink2.0的展望和要解决的问题。 1.0时代和2.0时代避免…

EasyPlayer.js播放器Web播放H.265要兼顾哪些方面?

在数字化时代,流媒体技术已经成为信息传播和娱乐消费的重要方式。随着互联网技术的飞速发展和移动设备的普及,流媒体服务正在重塑我们的生活和工作方式。从视频点播、在线直播到音乐流媒体,流媒体技术的广泛应用不仅改变了内容的分发和消费模…

在 Solana 上实现 SOL 转账及构建支付分配器

与以太坊不同,在以太坊中,钱包通过 msg.value 指定交易的一部分并“推送” ETH 到合约,而 Solana 程序则是从钱包“拉取” Solana。 因此,没有“可支付”函数或“msg.value”这样的概念。 下面我们创建了一个新的 anchor 项目&a…

灵活接入第三方接口,解析第三方json数据,返回我们想要的json格式

需求&#xff1a;我想接入任意第三方http 接口&#xff08;暂不考虑鉴权问题&#xff09;、接口返回任意json数据。 1、要求返回的json数据通过我的R< T > 返回。 2、我的R< T > 里面包含参数 data&#xff0c;code&#xff0c;msg&#xff0c;success标识。 3、…

ExcelVBA编程输出ColorIndex与对应颜色色谱

标题 ExcelVBA编程输出ColorIndex与对应颜色色谱 正文 解决问题编程输出ColorIndex与对应色谱共56&#xff0c;打算分4纵列输出&#xff0c;标题是ColorIndex,Color,Name 1. 解释VBA中的ColorIndex属性 在VBA&#xff08;Visual Basic for Applications&#xff09;中&#xff…

【常微分方程讲义1.1】方程的种类发展与完备

方程在数学历史中不断发展&#xff0c;逐步趋于完备。从最初的简单代数方程到包含函数、算子甚至泛函的更复杂方程&#xff0c;数学家通过不断的扩展和深化&#xff0c;逐渐建立起更为丰富和多元的方程类型体系。方程的种类之所以不断演变&#xff0c;部分是因为解决实际问题的…

Unity 组件学习记录:Aspect Ratio Fitter

概述 Aspect Ratio Fitter是 Unity 中的一个组件&#xff0c;用于控制 UI 元素&#xff08;如Image、RawImage等&#xff09;的宽高比。它在处理不同屏幕分辨率和尺寸时非常有用&#xff0c;可以确保 UI 元素按照预期的比例进行显示。当添加到一个 UI 对象上时&#xff0c;Aspe…

数智读书笔记系列010 生命3.0:人工智能时代 人类的进化与重生

书名&#xff1a;生命3.0 生命3.0&#xff1a;人工智能时代,人类的进化与重生 著者&#xff1a;&#xff3b;美&#xff3d;迈克斯•泰格马克 迈克斯・泰格马克 教育背景与职业 教育背景&#xff1a;迈克斯・泰格马克毕业于麻省理工学院&#xff0c;获物理学博士学位。职业经…

校园点餐订餐外卖跑腿Java源码

简介&#xff1a; 一个非常实用的校园外卖系统&#xff0c;基于 SpringBoot 和 Vue 的开发。这一系统源于黑马的外卖案例项目 经过站长的进一步改进和优化&#xff0c;提供了更丰富的功能和更高的可用性。 这个项目的架构设计非常有趣。虽然它采用了SpringBoot和Vue的组合&am…

JavaScript 中通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能,JS中排序算法的使用详解(附实际应用代码)

目录 JavaScript 中通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能&#xff0c;JS中排序算法的使用详解&#xff08;附实际应用代码&#xff09; 一、为什么要使用Array.sort() 二、Array.sort() 的使用与技巧 1、基础语法 2、返回值 3、…

20241219解决荣品PRO-RK3566开发板适配gc2093摄像头之后通过HDMI输出的时候无法录像的问题

20241219解决荣品PRO-RK3566开发板适配gc2093摄像头之后通过HDMI输出的时候无法录像的问题 2024/12/19 19:37 使用荣品PRO-RK3566开发板配套的百度网盘中的SDK&#xff1a;rk-android13-20240713.tgz默认编译出来的IMG固件。 刷机之后&#xff0c;gc2093可以拍照&#xff0c;最…

ubuntu16.04ros-用海龟机器人仿真循线系统

下载安装sudo apt-get install ros-kinetic-turtlebot ros-kinetic-turtlebot-apps ros-kinetic-turtlebot-interactions ros-kinetic-turtlebot-simulator ros-kinetic-kobuki-ftdi sudo apt-get install ros-kinetic-rocon-*echo "source /opt/ros/kinetic/setup.bash…

YOLOv8目标检测(六)_封装API接口

YOLOv8目标检测(一)_检测流程梳理&#xff1a;YOLOv8目标检测(一)_检测流程梳理_yolo检测流程-CSDN博客 YOLOv8目标检测(二)_准备数据集&#xff1a;YOLOv8目标检测(二)_准备数据集_yolov8 数据集准备-CSDN博客 YOLOv8目标检测(三)_训练模型&#xff1a;YOLOv8目标检测(三)_训…

中后台管理信息系统:Axure12套高效原型设计框架模板全解析

中后台管理信息系统作为企业内部管理的核心支撑&#xff0c;其设计与实现对于提升企业的运营效率与决策能力具有至关重要的作用。为了满足多样化的中后台管理系统开发需求&#xff0c;一套全面、灵活的原型设计方案显得尤为重要。本文将深入探讨中后台管理信息系统通用原型方案…

uniapp使用腾讯地图接口的时候提示此key每秒请求量已达到上限或者提示此key每日调用量已达到上限问题解决

要在创建的key上添加配额 点击配额之后进入分配页面&#xff0c;分配完之后刷新uniapp就可以调用成功了。

【一篇搞定配置】如何在Ubuntu上配置单机/伪分布式Hadoop

&#x1f308; 个人主页&#xff1a;十二月的猫-CSDN博客 &#x1f525; 系列专栏&#xff1a; &#x1f3c0;各种软件安装与配置_十二月的猫的博客-CSDN博客 &#x1f4aa;&#x1f3fb; 十二月的寒冬阻挡不了春天的脚步&#xff0c;十二点的黑夜遮蔽不住黎明的曙光 目录 1.…

利用Python爬虫实现数据收集与挖掘

Python爬虫是一种自动化程序&#xff0c;可以模拟浏览器行为&#xff0c;自动地从互联网上抓取、分析和收集数据。Python爬虫通常使用requests、selenium等库来发送HTTP请求&#xff0c;获取网页内容&#xff0c;并使用BeautifulSoup、lxml等库来解析网页&#xff0c;提取所需的…

语音识别失败 chrome下获取浏览器录音功能,因为安全性问题,需要在localhost或127.0.0.1或https下才能获取权限

环境&#xff1a; Win10专业版 谷歌浏览器 版本 131.0.6778.140&#xff08;正式版本&#xff09; &#xff08;64 位&#xff09; 问题描述&#xff1a; 局域网web语音识别出现识别失败 chrome控制台出现下获取浏览器录音功能&#xff0c;因为安全性问题&#xff0c;需要在…

springboot444新冠物资管理系统的设计与实现(论文+源码)_kaic

摘 要 传统办法管理信息首先需要花费的时间比较多&#xff0c;其次数据出错率比较高&#xff0c;而且对错误的数据进行更改也比较困难&#xff0c;最后&#xff0c;检索数据费事费力。因此&#xff0c;在计算机上安装新冠物资管理系统软件来发挥其高效地信息处理的作用&#x…