机器学习中XGBoost算法调参技巧

图片

本文将详细解释XGBoost中十个最常用超参数的介绍,功能和值范围,及如何使用Optuna进行超参数调优。

对于XGBoost来说,默认的超参数是可以正常运行的,但是如果你想获得最佳的效果,那么就需要自行调整一些超参数来匹配你的数据,以下参数对于XGBoost非常重要:

  • eta

  • num_boost_round

  • max_depth

  • subsample

  • colsample_bytree

  • gamma

  • min_child_weight

  • lambda

  • alpha

技术交流

技术要学会分享、交流,不建议闭门造车。一个人可以走的很快、一堆人可以走的更远。

本文文章由粉丝的分享、推荐,资料干货、资料分享、数据、技术交流提升,均可加交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、添加微信号:pythoner666,备注:来自CSDN + 加群
方式②、微信搜索公众号:Python学习与数据挖掘,后台回复:加群

XGBoost的API有2种调用方法,一种是我们常见的原生API,一种是兼容Scikit-learn API的API,Scikit-learn API与Sklearn生态系统无缝集成。我们这里只关注原生API(也就是我们最常见的),但是这里提供一个列表,这样可以帮助你对比2个API参数,万一以后用到了呢:

图片

如果想使用Optuna以外的超参数调优工具,可以参考该表。下图是这些参数对之间的相互作用:

图片

这些关系不是固定的,但是大概情况是上图的样子,因为有一些其他参数可能会对我们的者10个参数有额外的影响。

1、objective

这是我们模型的训练目标

图片

最简单的解释是,这个参数指定我们模型要做的工作,也就是影响决策树的种类和损失函数。

2、num_boost_round - n_estimators

num_boost_round指定训练期间确定要生成的决策树(在XGBoost中通常称为基础学习器)的数量。默认值是100,但对于今天的大型数据集来说,这还远远不够。

增加参数可以生成更多的树,但随着模型变得更复杂,过度拟合的机会也会显著增加。

从Kaggle中学到的一个技巧是为num_boost_round设置一个高数值,比如100,000,并利用早停获得最佳版本。

在每个提升回合中,XGBoost会生成更多的决策树来提高前一个决策树的总体得分。这就是为什么它被称为boost。这个过程一直持续到num_boost_round轮询为止,不管是否比上一轮有所改进。

但是通过使用早停技术,我们可以在验证指标没有提高时停止训练,不仅节省时间,还能防止过拟合

有了这个技巧,我们甚至不需要调优num_boost_round。下面是它在代码中的样子:

 # Define the rest of the params
 params = {...}
 
 # Build the train/validation sets
 dtrain_final = xgb.DMatrix(X_train, label=y_train)
 dvalid_final = xgb.DMatrix(X_valid, label=y_valid)
 
 bst_final = xgb.train(
    params,
    dtrain_final,
    num_boost_round=100000 # Set a high number
    evals=[(dvalid_final, "validation")],
    early_stopping_rounds=50, # Enable early stopping
    verbose_eval=False,
 )

上面的代码使XGBoost生成100k决策树,但是由于使用了早停,当验证分数在最后50轮中没有提高时,它将停止。一般情况下树的数量范围在5000-10000即可。控制num_boost_round也是影响训练过程运行时间的最大因素之一,因为更多的树需要更多的资源。

3、eta - learning_rate

在每一轮中,所有现有的树都会对给定的输入返回一个预测。例如,五棵树可能会返回以下对样本N的预测:

 Tree 1: 0.57   Tree 2: 0.9   Tree 3: 4.25   Tree 4: 6.4   Tree 5: 2.1

为了返回最终的预测,需要对这些输出进行汇总,但在此之前XGBoost使用一个称为eta或学习率的参数缩小或缩放它们。缩放后最终输出为:

 output = eta * (0.57 + 0.9 + 4.25 + 6.4 + 2.1)

大的学习率给集合中每棵树的贡献赋予了更大的权重,但这可能会导致过拟合/不稳定,会加快训练时间。而较低的学习率抑制了每棵树的贡献,使学习过程更慢但更健壮。这种学习率参数的正则化效应对复杂和有噪声的数据集特别有用。

学习率与num_boost_round、max_depth、subsample和colsample_bytree等其他参数呈反比关系。较低的学习率需要较高的这些参数值,反之亦然。但是一般情况下不必担心这些参数之间的相互作用,因为我们将使用自动调优找到最佳组合。

4、subsample和colsample_bytree

子抽样subsample它将更多的随机性引入到训练中,从而有助于对抗过拟合。

Subsample =0.7意味着集合中的每个决策树将在随机选择的70%可用数据上进行训练。值1.0表示将使用所有行(不进行子抽样)。

与subsample类似,也有colsample_bytree。顾名思义,colsample_bytree控制每个决策树将使用的特征的比例。Colsample_bytree =0.8使每个树使用每个树中随机80%的可用特征(列)。

调整这两个参数可以控制偏差和方差之间的权衡。使用较小的值降低了树之间的相关性,增加了集合中的多样性,有助于提高泛化和减少过拟合。

但是它们可能会引入更多的噪声,增加模型的偏差。而使用较大的值会增加树之间的相关性,降低多样性并可能导致过拟合。

5、max_depth

最大深度max_depth控制决策树在训练过程中可能达到的最大层次数。

图片

更深的树可以捕获特征之间更复杂的相互作用。但是更深的树也有更高的过拟合风险,因为它们可以记住训练数据中的噪声或不相关的模式。为了控制这种复杂性,可以限制max_depth,从而生成更浅、更简单的树,并捕获更通用的模式。

Max_depth数值可以很好地平衡了复杂性和泛化。

6、7、alpha,lambda

这两个参数一起说是因为alpha (L1)和lambda (L2)是两个帮助过拟合的正则化参数。

与其他正则化参数的区别在于,它们可以将不重要或不重要的特征的权重缩小到0(特别是alpha),从而获得具有更少特征的模型,从而降低复杂性。

alpha和lambda的效果可能受到max_depth、subsample和colsample_bytree等其他参数的影响。更高的alpha或lambda值可能需要调整其他参数来补偿增加的正则化。例如,较高的alpha值可能受益于较大的subsample值,因为这样可以保持模型多样性并防止欠拟合。

8、gamma

如果你读过XGBoost文档,它说gamma是:

在树的叶节点上进行进一步分区所需的最小损失减少。

英文原文:the minimum loss reduction required to make a further partition on a leaf node of the tree.

我觉得除了写这句话的人,其他人都看不懂。让我们看看它到底是什么,下面是一个两层决策树:

图片

为了证明通过拆分叶节点向树中添加更多层是合理的,XGBoost应该计算出该操作能够显著降低损失函数。

但“显著是多少呢?”这就是gamma——它作为一个阈值来决定一个叶节点是否应该进一步分割。

如果损失函数的减少(通常称为增益)在潜在分裂后小于选择的伽马,则不执行分裂。这意味着叶节点将保持不变,并且树不会从该点开始生长。

所以调优的目标是找到导致损失函数最大减少的最佳分割,这意味着改进的模型性能。

9、min_child_weight

XGBoost从具有单个根节点的单个决策树开始初始训练过程。该节点包含所有训练实例(行)。然后随着 XGBoost 选择潜在的特征和分割标准最大程度地减少损失,更深的节点将包含越来越少的实例。

图片

如果让XGBoost任意运行,树可能会长到最后节点中只有几个无关紧要的实例。这种情况是非常不可取的,因为这正是过度拟合的定义。

所以XGBoost为每个节点中继续分割的最小实例数设置一个阈值。通过对节点中的所有实例进行加权,并找到权重的总和,如果这个最终权重小于min_child_weight,则分裂停止,节点成为叶节点。

上面解释是对整个过程的最简化的版本,因为我们主要介绍他的概念。

总结

以上就是我们对这 10个重要的超参数的解释,如果你想更深入的了解仍有很多东西需要学习。所以建议给ChatGPT以下两个提示:

 1) Explain the {parameter_name} XGBoost parameter in detail and how to choose values for it wisely.
 
 2) Describe how {parameter_name} fits into the step-by-step tree-building process of XGBoost.

它肯定比我讲的明白,对吧。

最后如果你也用optuna进行调优,请参考以下的GIST:
https://gist.github.com/BexTuychiev/823df08d2e3760538e9b931d38439a68

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/93931.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C++——引用

引用的概念 引用不是新定义一个变量,而是给已存在的变量取一个别名,编译器不会因为引用变量而开辟内存空间,它和它引用的变量公用同一块空间。 相当于是给被引用的变量取了一个小名,但是相当于是同一个变量。 类型& 引用变…

ES 7.6 - APi基础操作篇

ES7.6-APi基础操作篇 前言相关知识索引相关创建索引查询索引查询所有索引删除索引关闭与打开索引关闭索引打开索引 冻结与解冻索引冻结索引解冻索引 映射相关创建映射查看映射新增字段映射 文档相关(CURD)新增文档根据ID查询修改文档全量覆盖根据ID选择性修改根据条件批量更新 …

手写数字识别之网络结构

目录 手写数字识别之网络结构 数据处理 经典的全连接神经网络 卷积神经网络 手写数字识别之网络结构 无论是牛顿第二定律任务,还是房价预测任务,输入特征和输出预测值之间的关系均可以使用“直线”刻画(使用线性方程来表达&#xff09…

【IMX6ULL驱动开发学习】10.Linux I2C驱动实战:AT24C02驱动设计流程

前情回顾:【IMX6ULL驱动开发学习】09.Linux之I2C框架简介和驱动程序模板_阿龙还在写代码的博客-CSDN博客 目录 一、修改设备树(设备树用来指定引脚资源) 二、编写驱动 2.1 i2c_drv_read 2.2 i2c_drv_write 2.3 完整驱动程序 三、上机测…

Spring 与【MyBatis 】和【 pageHelper分页插件 】整合

目录 一、Spring整合MyBatis 1. 导入pom依赖 2. 利用mybatis逆向工程生成模型层层代码 3. 编写配置文件 4. 注解式开发 5. 编写Junit测试类 二、AOP整合pageHelper分页插件 1. 创建一个AOP切面 2. Around("execution(* *..*xxx.*xxx(..))") 表达式解析 3. 编…

Visual Studio 2022的MFC框架——WinMain函数

我是荔园微风,作为一名在IT界整整25年的老兵,今天我们来重新审视一下Visual Studio 2022下开发工具的MFC框架知识。 大家还记得创建Win32应用程序是怎么弄的吗? Win32应用程序的建立到运行是有一个个关系分明的步骤的: 1.进入W…

【面试经典150题】删除有序数组中的重复项-JavaScript版

题目链接 思路1&#xff1a;使用set。 /*** param {number[]} nums* return {number}*/ var removeDuplicates function(nums) {const uniqueSetnew Set();for(let i0;i<nums.length;i){uniqueSet.add(nums[i]);}const uniqueArrayArray.from(uniqueSet);nums.length0;nu…

【LeetCode75】第三十五题 统计二叉树中好节点的数目

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 给我们一棵二叉树&#xff0c;让我们统计这棵二叉树中好节点的数目。 那么什么是好节点&#xff0c;题目中给出定义&#xff0c;从根节点…

浅谈 Linux 下 vim 的使用

Vim 是从 vi 发展出来的一个文本编辑器&#xff0c;其代码补全、编译及错误跳转等方便编程的功能特别丰富&#xff0c;在程序员中被广泛使用。 Vi 是老式的字处理器&#xff0c;功能虽然已经很齐全了&#xff0c;但还有可以进步的地方。Vim 可以说是程序开发者的一项很好用的工…

门禁系统忘记登入密码,现在更换电脑如何迁移旧电脑门禁系统的数据

环境&#xff1a; ivms-4200 v3.10.0.6_c 问题描述&#xff1a; 门禁系统忘记登入密码,现在更换电脑如何迁移旧电脑门禁系统的数据&#xff0c;旧电脑记住密码&#xff0c;忘了密码和密保了 解决方案&#xff1a; 1.前往海康官网下载4200客户端&#xff0c;在新电脑上安装 …

平衡二叉树及其应用详解

平衡二叉树 定义与性质 平衡二叉树&#xff08;Balanced Binary Tree&#xff09;是计算机科学中的一种数据结构&#xff0c;它是二叉排序树的一种特殊情况。 平衡二叉树满足以下性质&#xff1a; 左子树和右子树的高度差不超过 1。也就是说&#xff0c;对于任意节点&#…

echarts 甘特图一组显示多组数据

<template><el-button type"primary" click"addlin">添加线</el-button><el-button type"success" click"addArea">添加区域</el-button><div ref"echart" id"echart" class&qu…

18-使用钩子函数判断用户登录权限-登录前缀

钩子函数的两种应用: (1). 应用在app上 before_first_request before_request after_request teardown_request (2). 应用在蓝图上 before_app_first_request #只会在第一次请求执行,往后就不执行, (待定,此属性没调试通过) before_app_request # 每次请求都会执行一次(重点…

计网-All

路由器的功能与路由表的查看_路由器路由表_傻傻小猪哈哈的博客-CSDN博客路由基础-直连路由、静态路由与动态路由的概念_MikeVane-bb的博客-CSDN博客路由器的功能与路由表的查看_路由器路由表_傻傻小猪哈哈的博客-CSDN博客 直连路由就是路由器直接连了一个网段&#xff0c;他就…

【C++ 学习 ⑱】- 多态(上)

目录 一、多态的概念和虚函数 1.1 - 用基类指针指向派生类对象 1.2 - 虚函数和虚函数的重写 1.3 - 多态构成的条件 1.4 - 多态的应用场景 二、协变和如何析构派生类对象 2.1 - 协变 2.2 - 如何析构派生类对象 三、C11 的 override 和 final 关键字 一、多态的概念和虚…

微信扫码跳转微信小程序

一:首先声明为什么需要这样做 项目中需要在后台管理页面进行扫码支付,其他人弄了微信小程序支付,所以就需要挑战小程序进行支付,在跳转的时候需要参数例如订单编号等 二:跳转小程序的方法有多种 接口调用凭证 | 微信开放文档 具体可以参考微信开放文档 1.获取scheme码 按照文…

【项目实战典型案例】05.前后端分离的好处(发送调查问卷)

目录 一、背景二、思路三、过程1、主要的业务逻辑2、解决问题的思路 四、总结五、面向对象的好处 一、背景 以下流程图是给用户发送调查问的整体流程&#xff0c;将不必要的业务逻辑放到前端进行处理。这样导致逻辑混乱难以维护。前后端分离的其中一个目的是将功能的样式放在了…

基础论文学习(5)——MAE

MAE&#xff1a;Masked Autoencoders Are Scalable Vision Learners Self-Supervised Learning step1&#xff1a;先用无标签数据集&#xff0c;把参数从一张白纸训练到初步预训练模型&#xff0c;可以得到数据的 Visual Representationstep2&#xff1a;再从初步成型&#x…

clickhouse ssb-dbgen数据构造 及 clickhouse-benchmark简单压测

一、 测试数据构造 1. 数据样例 官方文档有给出一批数据样例。优点是比较真实&#xff0c;缺点是太大了&#xff0c;动辄上百G不适合简单小测试 Anonymized Yandex.Metrica DatasetStar Schema BenchmarkWikiStatTerabyte of Click Logs from CriteoAMPLab Big Data Benchma…

浅析Linux 物理内存外碎片化

本文出现的内核代码来自Linux4.19&#xff0c;如果有兴趣&#xff0c;读者可以配合代码阅读本文。 一、Linux物理内存外碎片化概述 什么是Linux物理内存碎片化&#xff1f;Linux物理内存碎片化包括两种&#xff1a; 1.物理内存内碎片&#xff1a;指分配给用户的内存空间中未…