基础论文学习(5)——MAE

MAE:Masked Autoencoders Are Scalable Vision Learners

Self-Supervised Learning

  • step1:先用无标签数据集,把参数从一张白纸训练到初步预训练模型,可以得到数据的 Visual Representation
  • step2:再从初步成型,根据你下游任务 Downstream Tasks的不同去用带标签的数据集把参数训练到完全成型。注意这是2个阶段。

在这里插入图片描述

第一个阶段不涉及任何下游任务,就是拿着一堆无标签的数据去预训练,没有特定的任务,这个话用官方语言表达叫做:in a task-agnostic way

第二个阶段涉及下游任务,就是拿着一堆带标签的数据去在下游任务上 Fine-tune,这个话用官方语言表达叫做:in a task-specific way

Self-Supervised Learning 不仅是在NLP领域,在CV, 语音领域也有很多经典的工作,如下图2所示。它可以分成3类:Data Centric, Prediction (也叫 Generative)Contrastive
在这里插入图片描述
其中的主流就是基于 Generative 的方法和基于 Contrative 的方法。如下图所示这里简单介绍下。

  • 基于 Generative 的方法主要关注的重建误差,比如对于 NLP 任务而言,一个句子中间盖住一个 token,让模型去预测,令得到的预测结果与真实的 token 之间的误差作为损失。如Diffusion、VAE等。
  • 基于 Contrastive 的方法不要求模型能够重建原始输入,而是希望模型能够在特征空间上对不同的输入进行分辨。如SimCLR等

在这里插入图片描述

1. Masked AutoEncoders (MAE) 原理架构

掩码自编码器 (masked autoencoders (MAE)) 要做的事情还是通过自监督学习将被masked抹去的图像块补充上。属于 Generative (Predictive) pre-training 的类型。这种类型自监督学习的另一个著名的例子就是 BERT。

对于 BERT 模型而言,一个 sentence 中间盖住一些 tokens,让模型去预测,令得到的预测结果与真实的 tokens 之间的误差作为损失。它告诉了我们直接 reconstruct sentence 也可以做到很 work。

对于 MAE 模型而言,一个 image 中间盖住一些 patches,让模型去预测,令得到的预测结果与真实的 image patches 之间的误差作为损失。它告诉了我们直接 reconstruct image 原图也可以做到很 work。

在这里插入图片描述

MAE架构:Mask 掉输入图像的随机的 patches 并重建它们。它基于两个核心理念:研究人员提出了一个非对称编码器 - 解码器架构,其中Encoder编码器只对可见的 patch 子集进行操作 (即没有被 mask 掉的 token),Decoder解码器可以从潜在表征和被 masked 掉的 token 重建原始图像。Decoder 的架构可以是十分轻量化的模型,且具体的架构对模型性能影响很大。研究人员进一步发现,Mask 掉大部分输入图像 (例如 75%)会产生重要且有意义 的自监督任务。

在这里插入图片描述
MAE 方法严格来讲属于一种去噪自编码器 (Denoising Auto-Encoders (DAE)),去噪自动编码器是一类自动编码器,它破坏输入信号,并学会重构原始的、未被破坏的信号。MAE 的 Encoder 和 Decoder 结构不同,是非对称式的。Encoder 将输入编码为 latent representation,而 Decoder 将从 latent representation 重建原始信号。

MAE 和 ViT 的做法一致,将图像划分成规则的,不重叠的 patches。然后按照均匀分布不重复地选择一些 patches 并且 mask 掉剩余的 patches。作者采用的 mask ratio 足够高,因此大大减小了 patches 的冗余信息,使得在这种情况下重建 images 不那么容易。(Hard Sample思想,增大loss加速收敛)

算法流程:

  • 首先将input image切分为patches,执行mask操作(75%),然后只把 可见的 patches送入encoder中,再将encoder的输出(latent representations)以及mask tokens作为轻量级decoder的输入,decoder重构整张image

  • 编码器: 编码器实际上就是ViT,将input image切分为不重叠的patches之后,执行linear projection,再加上positional embeddings (the sine-cosine version) ,然后送入transformer blocks

  • 解码器: 同样使用ViT,将mask tokens + encoded visible patches作为输入,加上位置编码 (the sine-cosine version) 。decoder的最后一层是linear projection,输出通道数量和一个patch内的pixel数量相同(方便重构),然后再reshape,重构image。损失函数使用MSE,损失函数只对masked patches计算(和BERT相同)。同时作者也尝试了normalization的方式,即计算一个patch内像素值的均值和标准差,然后对patch执行normalization,此时encoder的重构任务发生了一些变化,需要重构normalized pixel values,实验表明这种方式效果更好一点

  • MAE中decoder的设计并不重要,因为预训练结束之后,只保留encoder,decoder只需要完成预训练时的图像重构任务。但是作者也表示decoder决定了latent representations的语义级别

为什么 BERT (2018) 提出这么久以后,直到 BEIT (2021.6) 和 MAE (2021.11) 之前,一直在 CV 领域都没有一个很类似的 CV BERT 出现?

  1. CV 和 NLP 主流架构不同:直到 ViT (2020.12) 出现之前,CV 的主流架构一直是以卷积网络为主,NLP 的主流架构一直是以 Transformer 为主。卷积核作用在一个个的 grid 上面,直观来讲没法产生像 Transformer 一样的 token 的概念,也就是说如果我们只使用卷积网络,那么 image token 概念的建立就不那么直观。所以,像 Transformer 那样在 token 的基础上进行自监督学习就不太适用,这是第一个难点。
  2. 语言和图片 (视频) 的信息密度不同:语言是人类造就的信号,它 highly semantic , information-dense。而图片 (视频) 是自然产生的信号,它 heavy spatial redundancy。即挡住图片的一部分 patches,可以很容易地通过看它周围的 patches 而想象出它的样子来。所以,语言和图像,一个信息密度高,一个信息密度低,这是第二个难点。解决的办法是什么呢?作者提出了一个简单的策略:即挡住图片的 patches 的比例高一些。比如之前你挡住一张图片的 30% 的 patches,能够轻松通过周围的 patches 预测出来;那现在如果挡住图片的 90% 的 patches,还能够轻松通过周围的 patches 预测出来吗?
  3. AutoEncoder 里面的 Decoder 部分 (就是将映射得到的中间特征重建为 input 的模块) 在 CV 和 NLP 中充当的角色不同:在 CV 领域,Decoder 的作用是重建 image pixels,所以 Decoder 的输出语义级别很低。在 NLP 领域,Decoder 的作用是重建 sentence words ,所以 Decoder 的输出语义级别很丰富。

1.1 MAE Encoder

MAE Encoder 采用 ViT 架构,但只会作用于 unmasked images。和 ViT 思路一样,MAE Encoder 会先通过 Linear Projection 编码图片,再加上位置编码,随后送入一堆连续的 Transformer Block 里面。但是编码器只对整个图片 patches 集合的一个小子集 (例如25%)进行操作,而删除 masked patches(75%)。这里和 BERT 做法不一样,BERT 使用对于 mask 掉的部分使用特殊字符代替,而 MAE 不使用掩码标记。

1.2 MAE Decoder

MAE Decoder 采用 Transformer 架构,输入整个图片 patches 集合,不光是 unmasked tokens (图中蓝色色块),还有被 mask 掉的部分 (图中灰色色块)。每个 mask tokens 都是一个共享的、学习的向量,它指示了这里有一个待预测的 tokens。作者还将位置嵌入添加到这个完整 image patch 集合中的所有 tokens 中,位置编码表示每个 patches 在图像中的位置的信息。

MAE Decoder 仅用于预训练期间执行图像重建任务。因为自监督学习的特点就是只用最后预训练好的 Encoder 完成分类任务。因此,可以灵活设计与编码器设计无关的解码器结构。作者用比编码器更窄更浅的很小的解码器做实验。 在这种非对称的设计下,tokens 就可以由轻量级解码器处理,这大大缩短了预训练的时间。

1.3 自监督学习目标函数 Reconstruction Target

Decoder 的最后一层是一个 Linear Projection 层,其输出的 channel 数等于图像的像素 (pixel) 数。所以 Decoder 的输出会进一步 reshape 成图像的形状。损失函数就是 MSE Loss,即直接让 reconstructed image 和 input image 的距离越接近越好。

作者还尝试了另外一种损失函数,就是先计算出每个 patch 的像素值的 mean 和 deviation,并使用它们去归一化这个 patch 的每个像素值。最后再使用归一化的像素值进行 MSE Loss 计算。但是发现这样做的效果比直接 MSE Loss 好。

1.4 具体实现

MAE 的具体实现方法是:

  • 首先通过 Linear Projection 和位置编码得到 image tokens。
  • 随机 shuffle 这些 tokens,按照 masking ratio 扔掉最后的一部分。
  • 把 unmasked patches 输出到 Encoder 中,得到这些 tokens 的表征。
  • 把 Encoder 的输出,结合 masked tokens (可学习的向量),执行 unshuffle操作恢复顺序,再一起输入到 Decoder 中。
  • shuffle 和 unshuffle 操作的时间开销可忽略不计。

MAE的优势

(1)Scalable:encoder只操作可见patches,把mask tokens给本身参数就不多的decoder去运算,大大降低了计算量,尤其当mask的比例很高的时候,大大减少了预训练时间,让MAE可以很轻松的scale到更大的模型上(enabling us to easily scale MAE to large models),并且通过实验发现随着模型增大,效果越来越好

(2)高容量且泛华性能好(very high-capacity models that generalize well):使用MAE预训练方法,可以训练很大的model,比如ViT-Large/Huge,当把预训练好的ViT-Huge迁移到下游任务时,模型表现非常好,甚至超过了使用监督预训练的相同模型(achieves better results than its supervised pre-training counterparts),这说明MAE预训练学习到的表示可以很好的泛化到下游任务(these pre-trained representations generalize well to various downstream task)

2. 实验分析

在ImageNet-1K上自监督预训练,使用标准ViT结构,预训练后,使用encoder进行微调和linear probing,因为是用于图像分类,所以类似于ViT,在输入加一个class token(an auxiliary dummy token),实验结果表明使用average pooling可以达到相同的效果

(1)预训练阶段

没有使用color jittering(数据增强的方式之一)、drop path(dropout的变体)、gradient clip(设置阈值预防梯度爆炸/消失)。是ViT官方代码相同,使用xavier uniform初始化所有Transformer blocks。使用linear learning rate scaling rule

在这里插入图片描述

(2)端到端微调

使用layer-wise learning rate decay

在这里插入图片描述

(3)linear probing

训练设置参考MoCov3,linear probing和端到端微调有很大不同,regularization对linear probing来说可能会损失模型性能,因此和MoCov3中一样,舍弃了一些regularization strategies
在这里插入图片描述

(4)部分微调(partial fine-tune):

linear probing缺少非线性建模能力(it misses the opportunity of pursuing strong but non-linear features—which is indeed a strength of deep learning),partial fine-tune 只微调encoder最后个layers,其超参数等设置和微调时相同的(table 9),除了调整了fine-tunning epochs

四个阶段均计算top-1 accuracy(224x224),使用ViT-Large作为baseline,进行ablation study。对比ViT-Large 从头训练(200 epochs)和微调(50 epochs)两种方式,可以发现train from scratch效果并不如微调
在这里插入图片描述

用 MAE 做 pre-training 只需 ImageNet-1k 就能达到 87.8% 的 Top-1 准确度,超过了所有在 ImageNet-21k pre-training 的 ViT 变体模型。而从方法上看,MAE 选择直接重建原图的元素,而且证明了其可行性,改变了人们的认知,又几乎可以覆盖 CV 里所有的识别类任务,看起来像是开启了一个新的方向。直接重建原图的元素是非常重要的,因为通过这个形式,作者就用最最直观的方式完成了 MIM 任务,使得 MIM的潜力逐步被证实。从 MLM 到 MIM 的过渡已被证明,由此观之比肩 GPT3 的 CV 预训练大模型已不远矣。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/93899.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

clickhouse ssb-dbgen数据构造 及 clickhouse-benchmark简单压测

一、 测试数据构造 1. 数据样例 官方文档有给出一批数据样例。优点是比较真实,缺点是太大了,动辄上百G不适合简单小测试 Anonymized Yandex.Metrica DatasetStar Schema BenchmarkWikiStatTerabyte of Click Logs from CriteoAMPLab Big Data Benchma…

浅析Linux 物理内存外碎片化

本文出现的内核代码来自Linux4.19,如果有兴趣,读者可以配合代码阅读本文。 一、Linux物理内存外碎片化概述 什么是Linux物理内存碎片化?Linux物理内存碎片化包括两种: 1.物理内存内碎片:指分配给用户的内存空间中未…

【产品规划】优先级规划

文章目录 1、功能优先级保障了产品在最短时间接受验证2、隐藏在优先级背后的是产品的目标和价值3、敏捷方法论中的功能优先级制定方法4、优先级制定时常见问题和应对方法5、敏捷方法论中的开发计划制定 1、功能优先级保障了产品在最短时间接受验证 2、隐藏在优先级背后的是产品…

C++ list模拟实现

list模拟实现代码&#xff1a; namespace djx {template<class T>struct list_node{T _data;list_node<T>* _prev;list_node<T>* _next;list_node(const T& x T()):_data(x),_prev(nullptr),_next(nullptr){}};template<class T,class Ref,class Pt…

ctfshow-红包题第二弹

0x00 前言 CTF 加解密合集CTF Web合集 0x01 题目 0x02 Write Up 同样&#xff0c;先看一下有没有注释的内容&#xff0c;可以看到有一个cmd的入参 执行之后可以看到文件代码&#xff0c;可以看到也是eval&#xff0c;但是中间对大部分的字符串都进行了过滤&#xff0c;留下了…

纸贵科技连续三年蝉联IDC中国 FinTech 50榜单

近日&#xff0c;国际权威市场研究机构IDC公布了“2023 IDC中国FinTech 50榜单”。作为领先的区块链技术和解决方案服务商&#xff0c;纸贵科技凭借过硬的区块链技术和丰富的金融科技创新成果&#xff0c;连续第三年荣登IDC中国FinTech 50榜单。 IDC中国FinTech 50榜单是金融科…

【leetcode 力扣刷题】双指针///原地扩充线性表

双指针///原地扩充线性表 剑指 Offer 05. 替换空格定义一个新字符串扩充字符串&#xff0c;原地替换思考 剑指 Offer 05. 替换空格 题目链接&#xff1a;剑指 Offer 05. 替换空格 题目内容&#xff1a; 这是一道简单题&#xff0c;理解题意&#xff0c;就是将字符串s中的空格…

很干的 Nginx

&#x1f3a8; 前言 本篇文章有些概念性的东西&#xff0c;是结合自己的理解表达出来的&#xff0c;可能有些理解不到位的地方。希望多多指教&#xff0c;谢谢大家。 红包献上 &#x1f9e7;&#x1f9e7;&#x1f9e7;&#x1f9e7;&#x1f9e7;&#x1f9e7;&#x1f9e7;…

【c语言】文件操作 万字详解

目录 一&#xff0c;为什么使用文件 二&#xff0c;什么是文件 1&#xff0c;程序文件 2&#xff0c;数据文件 3&#xff0c;文件名 三&#xff0c;文件的打开和关闭 1&#xff0c;文件指针 2&#xff0c;文件的打开和关闭 四&#xff0c; 文件的顺序读写 1&#xff0c;顺序…

ethers.js2:provider提供商

1、Provider类 Provider类是对以太坊网络连接的抽象&#xff0c;为标准以太坊节点功能提供简洁、一致的接口。在ethers中&#xff0c;Provider不接触用户私钥&#xff0c;只能读取链上信息&#xff0c;不能写入&#xff0c;这一点比web3.js要安全。 除了之前介绍的默认提供者d…

如何编译打包OpenSSH 9.4并实现批量升级

1 介绍 openssh 9.4版本已于8月10号发布&#xff0c;安全团队又催着要赶紧升级环境里的ssh版本&#xff0c;本文主要介绍Centos5、Centos6、Centos7下openssh 9.4源码编译rpm包以及批量升级服务器openssh版本的方法。关注公众号后台回复ssh可获取本文相关源码文件。 https://w…

使用Tampermonkey(篡改猴)向页面注入js脚本

一、Tampermonkey 简单介绍 Tampermonkey是一款浏览器插件&#xff0c;适用于Chrome、Microsoft Edge、Safari、Opera Next 和 Firefox。他允许我们自定义javascript给指定网页添加功能&#xff0c;或修改现有功能。也可以用来辅助调试&#xff0c;或去除网页广告等。 官网地…

深度学习-4-二维目标检测-YOLOv3理论模型

单阶段目标检测模型YOLOv3 R-CNN系列算法需要先产生候选区域&#xff0c;再对候选区域做分类和位置坐标的预测&#xff0c;这类算法被称为两阶段目标检测算法。近几年&#xff0c;很多研究人员相继提出一系列单阶段的检测算法&#xff0c;只需要一个网络即可同时产生候选区域并…

Redis.conf详解

Redis.conf详解 配置文件unit单位对大小写不敏感 包含 网络 bind 127.0.0.1 # 绑定的ip protected-mode yes # 保护模式 port 6379 # 端口设置通用 GENERAL daemonize yes # 以守护进程的方式运行 默认为no pidfile /var/run/redis_6379.pid #如果以后台的方式运行&#xff…

bash: conda: command not found

问题描述&#xff1a; 在Pycharm上用SSH远程连接到服务器&#xff0c;打开Terminal准备查看用 conda 创建的虚拟环境时&#xff0c;却发现调用 conda 指令时出现以下报错&#xff1a; -bash: conda: command not found如果使用Xshell 利用端口号直接连接该 docker 容器&#…

CTF-XXE(持续更新,欢迎分享更多相关知识点的题目)

知识 实例 BUU [PHP]XXE 进来看到 然后一起看 Write BUU XXE COURSE 1 进来看到 一起看 write NSS [NCTF2019]Fake XML cookbook 反正是XXE 直接整 write [NCTF 2019]True XML cookbook 不整花里胡哨&#xff0c;解题在最下面 write 与博主不同&#xff0c;我通过…

SQL中ON筛选和Where筛选的区别

转载&#xff1a;sql连接查询中on筛选与where筛选的区别https://zhuanlan.zhihu.com/p/26420938 结论:on后面接上连接条件&#xff0c;where后面接上过滤条件

裸露土堆识别算法

裸露土堆识别算法首先利用图像处理技术&#xff0c;提取出图像中的土堆区域。裸露土堆识别算法首通过计算土堆中被绿色防尘网覆盖的比例&#xff0c;判断土堆是否裸露。若超过40%的土堆没有被绿色防尘网覆盖&#xff0c;则视为裸露土堆。当我们谈起计算机视觉时&#xff0c;首先…

删除流氓360首页

不管你使用什么浏览器都很容易中招360给你自动设置的流氓首页&#xff0c;流氓厂石锤了。 你在浏览器设置新的首页一样无效&#xff0c;比如 完全没有卵用&#xff0c;以前这样是可以生效的&#xff0c;最近几天突然不行了&#xff0c;这简直流氓的不行&#xff0c;而且 细心…

合宙Air724UG LuatOS-Air LVGL API控件--进度条 (Bar)

进度条 (Bar) Bar 是进度条&#xff0c;可以用来显示数值&#xff0c;加载进度。 示例代码 – 创建进度条 bar lvgl.bar_create(lvgl.scr_act(), nil) – 设置尺寸 lvgl.obj_set_size(bar, 200, 20); – 设置位置居中 lvgl.obj_align(bar, NULL, lvgl.ALIGN_CENTER, 0, 0) …