自动驾驶控制与规划——Project 2: 车辆横向控制

目录

  • 零、任务介绍
  • 一、环境配置
  • 二、算法
  • 三、代码实现
  • 四、效果展示

零、任务介绍

  1. 补全src/ros-bridge/carla_shenlan_projects/carla_shenlan_stanley_pid_controller/src/stanley_controller.cpp中的TODO部分。

一、环境配置

上一次作业中没有配置docker使用gpu,后续可能有GPU计算的需求,因此重新运行一个带有GPU的容器。docker使用GPU的配置教程可以参考:在docker容器中使用nvidia显卡渲染rviz2界面。运行容器的命令如下:

docker run -d --net=host -it --name foxy_gpu --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all\
    -v /home/star:/home/star \
    -v /tmp/.X11-unix:/tmp/.X11-unix \
    -v /dev:/dev \
    -v /dev/dri:/dev/dri \
    --env DISPLAY=unix:1 \
    --env ROS_DISTRO=foxy \
    fishros2/ros:foxy-desktop

二、算法

Stanley控制使用前轮中心作为参考点,根据轨迹上距离参考点最近的点计算偏航误差和横向误差。
在这里插入图片描述
首先根据参考点的heading和车的heading计算偏航误差 θ e \theta_e θe。然后考虑横向误差,由几何关系可得
tan ⁡ δ e = e d , d = v / k \begin{aligned} \tan \delta_e = \frac{e}{d}, d = v/k \end{aligned} tanδe=de,d=v/k
可得
δ e = tan ⁡ − 1 k e v \delta_e = \tan^{-1} \frac{ke}{v} δe=tan1vke
此处的增益 k k k根据实验调整。结合上述两个误差项可以得到Stanley控制律
δ ( t ) = θ e ( t ) + tan ⁡ − 1 k e ( t ) v ( t ) \delta(t) = \theta_e(t) + \tan^{-1}\frac{ke(t)}{v(t)} δ(t)=θe(t)+tan1v(t)ke(t)
观察上述控制律可以发现,当车速 v v v较低时,即便是比较小的横向误差 e e e也会引起反正切函数的剧烈变化,因此在分母上增加一项常数,控制律变为
δ ( t ) = θ e ( t ) + tan ⁡ − 1 ( k e ( t ) k s + v ( t ) ) \delta(t) = \theta_e(t) + \tan^{-1}\left(\frac{ke(t)}{k_s + v(t)} \right) δ(t)=θe(t)+tan1(ks+v(t)ke(t))
当车速较快时,如果轨迹的偏航角变化较大,直接跟踪会导致车辆横向振荡,因此可以在 θ e \theta_e θe中加入阻尼,即增加PD控制器。综上所述,最终的Stanley控制器如下
δ = P D ( θ ) + tan ⁡ − 1 ( k e ( t ) k s + v ( t ) ) \delta = PD(\theta) + \tan^{-1}\left(\frac{ke(t)}{k_s + v(t)} \right) δ=PD(θ)+tan1(ks+v(t)ke(t))

三、代码实现

此处使用的PD控制器可以参考上一个project中的实现方法自动驾驶控制与规划——Project 1: 车辆纵向控制。为了避免低速行驶时的横向振荡,加入参数 k s k_s ks

class StanleyController {
public:
  StanleyController(){};
  ~StanleyController(){};

  void LoadControlConf();
  void ComputeControlCmd(const VehicleState &vehicle_state,
                         const TrajectoryData &planning_published_trajectory,
                         ControlCmd &cmd);
  void ComputeLateralErrors(const double x, const double y, const double theta,
                            double &e_y, double &e_theta);
  TrajectoryPoint QueryNearestPointByPosition(const double x, const double y);

protected:
  std::vector<TrajectoryPoint> trajectory_points_;
  double k_y_ = 0.0;
  double k_s_ = 0.0;	// 低速行驶时v小,较小的e也会导致atan振荡
  double u_min_ = 0.0;
  double u_max_ = 100.0;

  double theta_ref_;
  double theta_0_;
};
} // namespace control
} // namespace shenlan

这里的参数可以根据实验效果进行调整

void StanleyController::LoadControlConf() {
    k_y_ = 0.5;
    k_s_ = 0.5;
}

控制器整体的流程是:1.计算heading error;2.计算cross tracking error;3.利用Stanley控制器计算控制指令。需要注意对输出进行限幅。

void StanleyController::ComputeControlCmd(const VehicleState &vehicle_state, const TrajectoryData &planning_published_trajectory, ControlCmd &cmd) {
    trajectory_points_ = planning_published_trajectory.trajectory_points;
    // find the closest point on the reference trajectory
    TrajectoryPoint nearest_pt = QueryNearestPointByPosition(vehicle_state.x, vehicle_state.y);
    // theta_ref_在QueryNearestPointByPosition中已经更新了

    // get lateral error and heading error
    double e_y = 0.0;
    double e_theta = 0.0;

    ComputeLateralErrors(vehicle_state.x - nearest_pt.x, vehicle_state.y - nearest_pt.y, vehicle_state.heading, e_y, e_theta);

    double e_theta_pd = e_theta_pid_controller.Control(e_theta, 0.01);
    cmd.steer_target = e_theta_pd + atan2(k_y_ * e_y, vehicle_state.velocity + k_s_);

    // 输出限幅
    if (cmd.steer_target > 1.0) {
        cmd.steer_target = 1.0;
    } else if (cmd.steer_target < -1.0) {
        cmd.steer_target = -1.0;
    }
}

在计算误差时需要注意,横向误差是带有方向的,以车辆朝向为参考,左正右负。偏航误差在计算时超过 [ − π , π ) [-\pi, \pi) [π,π)的需要重新标准化到 [ − π , π ) [-\pi, \pi) [π,π)中。

void StanleyController::ComputeLateralErrors(const double x, const double y, const double theta, double &e_y, double &e_theta) {
    // 车头方向的单位矢量 (cos(theta), sin(theta))
    // 横向误差以车辆朝向为参考,左正右负
    e_y = cos(theta) * y - sin(theta) * x;

    e_theta = theta - theta_ref_;
    if (e_theta <= -M_PI) {
        e_theta += 2 * M_PI;
    } else if (e_theta >= M_PI) {
        e_theta -= 2 * M_PI;
    }
    std::cout << "theta: " << theta << " theta_ref_: " << theta_ref_ << std::endl;
    std::cout << "e_theta: " << e_theta << std::endl;
}

四、效果展示

在宿主机启动carla仿真器

./CarlaUE4.sh -carla-rpc-port=2000 -prefernvidia

在docker容器中启动carla-ros-bridge

ros2 launch carla_shenlan_bridge_ego_vis carla_bridge_ego_vehicle.launch.py

启动控制节点

ros2 run carla_shenlan_stanley_pid_controller carla_shenlan_stanley_pid_controller_node

运行效果如下:

自动驾驶控制与规划——Project 2: 车辆横向控制

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/937708.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

FFmpeg库之ffplay

文章目录 FFmpeg环境搭建ffplay使用通用选项视频选项音频选项快捷键使用滤镜直播拉流 FFmpeg环境搭建 FFmpeg官网 FFmpeg环境搭建 我这里用的是cmake配置&#xff0c;mingw编译&#xff0c;不用移动文件夹 CMakeLists.txt cmake_minimum_required ( VERSION 3.16 )project…

jenkins pipeline打包流程

Jenkins Pipeline 是 Jenkins 提供的一种用于持续集成和持续交付&#xff08;CI/CD&#xff09;的脚本化流程工具。它允许你通过编写一个 Jenkinsfile 文件来定义整个构建、测试和部署的流程。本文介绍打包springcloud项目&#xff0c;react项目为docker镜像 文章目录 1.项目结…

【LC】876. 链表的中间结点

题目描述&#xff1a; 给你单链表的头结点 head &#xff0c;请你找出并返回链表的中间结点。 如果有两个中间结点&#xff0c;则返回第二个中间结点。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5] 输出&#xff1a;[3,4,5] 解释&#xff1a;链表只有一个中间结点…

WEB开发: Node.js路由之由浅入深- 即拿即用完整版

前面我们一起学习了Node.js路由之由浅入深&#xff0c;基本了解并熟悉了Node.js的路由实现。 现在我们来一个综合完整版&#xff0c;让这个路由模块即拿即用&#xff0c;也就是下载运行就可用&#xff0c;并可以轻松地自行增加路由&#xff0c;无需去繁琐地修改路由配置&#…

就业相关(硕士)

一、嵌入式 1.机器人行业 1.1 大致情况 要做机器人行业&#xff0c;主要技术栈是运动控制、深度学习、强化学习、具身智能等&#xff0c;主要求职方向有运动控制算法工程师和机器人算法工程师等等。大致薪资在30w到50w不等&#xff0c;主要看方向&#xff08;双211&#xff…

C++编程:使用树莓派Pico制作光控小夜灯

在智能家居系统中,光控设备通过环境光强度的变化自动调节设备的状态,具有广泛的应用。常见的应用场景包括自动开关灯、调节LED亮度等。本项目基于树莓派Pico开发板,通过光敏电阻检测环境光强度,并利用PWM调光控制LED亮度,实现一个简单的光控小夜灯。本文将深入解析光敏电阻…

安卓获取所有可用摄像头并指定预览

在Android设备中&#xff0c;做预览拍照的需求的时候&#xff0c;我们会指定 CameraSelector DEFAULT_FRONT_CAMERA前置 或者后置CameraSelector DEFAULT_BACK_CAMERA 如果你使用的是平板或者工业平板&#xff0c;那么就会遇到多摄像头以及外置摄像头问题&#xff0c;简单的指…

回归任务与分类任务应用及评价指标

能源系统中的回归任务与分类任务应用及评价指标 一、回归任务应用1.1 能源系统中的回归任务应用1.1.1 能源消耗预测1.1.2 负荷预测1.1.3 电池健康状态估计&#xff08;SOH预测&#xff09;1.1.4 太阳能发电量预测1.1.5 风能发电量预测 1.2 回归任务中的评价指标1.2.1 RMSE&…

shilei定标算法,测试的时候为什么有多解

设定P&#xff0c;找C12和C13时&#xff0c;如果找的是实数&#xff0c;则求解的P只需要保证是实数就能满足螺旋度 0方程

【echarts】数据过多时可以左右滑动查看(可鼠标可滚动条)

1. 鼠标左右拖动 在和 series 同级的地方配置 dataZoom&#xff1a; dataZoom: [{type: inside, // inside 鼠标左右拖图表&#xff0c;滚轮缩放&#xff1b; slider 使用滑动条start: 0, // 左边的滑块位置&#xff0c;表示从 0 开始显示end: 60, // 右边的滑块位置&#xf…

redis集群 服务器更换ip,怎么办,怎么更换redis集群的ip

redis集群 服务器更换ip&#xff0c;怎么办&#xff0c;怎么更换redis集群的ip 1、安装redis三主三从集群2、正常状态的redis集群3、更改redis集群服务器的ip 重启服务器 集群会down4、更改redis集群服务器的ip 重启服务器 集群down的原因5、更改redis集群服务器的ip后&#xf…

计算机网络知识点全梳理(一.TCP/IP网络模型)

目录 TCP/IP网络模型概述 应用层 什么是应用层 应用层功能 应用层协议 传输层 什么是传输层 传输层功能 传输层协议 网络层 什么是网络层 网络层功能 网络层协议 数据链路层 什么是数据链路层 数据链路层功能 物理层 物理层的概念和功能 写在前面 本系列文…

【Python爬虫实战】深入解析 Scrapy 管道:数据清洗、验证与存储的实战指南

&#x1f308;个人主页&#xff1a;易辰君-CSDN博客 &#x1f525; 系列专栏&#xff1a;https://blog.csdn.net/2401_86688088/category_12797772.html ​ 目录 前言 一、了解 Scrapy Shell 二、配置文件 settings.py &#xff08;一&#xff09;为什么需要配置文件 &…

PHPstudy中的数据库启动不了

法一 netstat -ano |findstr "3306" 查看占用该端口的进程号 taskkill /f /pid 6720 杀死进程 法二 sc delete mysql

Hu矩原理 | cv2中基于Hu矩计算图像轮廓相似度差异的函数cv2.matchShapes【小白记笔记】

Hu 矩&#xff08;Hu Moments&#xff09; 是一种用于描述轮廓形状的 不变特征。它基于图像的矩提取&#xff0c;经过数学变换得到 7 个不变矩&#xff0c;这些不变矩在图像 平移、旋转和缩放等几何变换下保持不变&#xff0c;适合用来衡量轮廓或形状的相似度差异。 1、图像矩…

Ilya Sutskever发表了对AI未来发展的颠覆性看法

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

网络层IP协议(TCP)

IP协议&#xff1a; 在了解IP协议之前&#xff0c;我们市面上看到的"路由器"其实就是工作在网络层。如下图&#xff1a; 那么网络层中的IP协议究竟是如何发送数据包的呢&#xff1f; IP报头&#xff1a; IP协议的报头是比较复杂的&#xff0c;作为程序猿只需要我们重…

【MySQL】InnoDB引擎中的Compact行格式

目录 1、背景2、数据示例3、Compact解释【1】组成【2】头部信息【3】隐藏列【4】数据列 4、总结 1、背景 mysql中数据存储是存储引擎干的事&#xff0c;InnoDB存储引擎以页为单位存储数据&#xff0c;每个页的大小为16KB&#xff0c;平时我们操作数据库都是以行为单位进行增删…

Visual Studio 玩转 IntelliCode AI辅助开发

&#x1f380;&#x1f380;&#x1f380;【AI辅助编程系列】&#x1f380;&#x1f380;&#x1f380; Visual Studio 使用 GitHub Copilot 与 IntelliCode 辅助编码Visual Studio 安装和管理 GitHub CopilotVisual Studio 使用 GitHub Copilot 扩展Visual Studio 使用 GitHu…

【LDAP】LDAP概念和原理介绍

目录 一、前言 二、什么是LDAP&#xff1f; 2.1 什么是目录服务&#xff1f; 2.2 LDAP的介绍 2.3 为什么要使用LDAP 三、LDAP的主要产品线 四、LDAP的基本模型 4.1 目录树概念 4.2 LDAP常用关键字列表 4.3 objectClass介绍 五、JXplorer工具使用 一、前言 对于许多的…