MATLAB图卷积神经网络GCN处理分子数据集节点分类研究

全文链接:https://tecdat.cn/?p=38570

本文主要探讨了如何利用图卷积网络(GCN)对图中的节点进行分类。介绍了相关的数据处理、模型构建、训练及测试等环节,通过对分子数据集的操作实践,展示了完整的节点分类流程,并对模型的效果进行了多方面评估,旨在为相关领域的研究与应用提供参考点击文末“阅读原文”获取完整代码数据)。

图卷积网络(GCN)是卷积神经网络的一种变体,在处理图结构数据的节点分类任务中有着重要应用。例如在化学领域,给定分子结构(以图表示化学键),可以利用GCN预测分子中原子的类型(如碳、氧等)。本文以数据集为例,详细阐述基于GCN的节点分类实现过程。

数据准备

(一)数据集下载与加载

首先从指定网址下载数据集,该数据集包含碳、氢、氮、氧和硫这五种不同的原子。通过以下代码实现下载与初步处理:

if ~exist(data_file,"file"):
 mkdir(output_folder)

加载下载好的MAT文件中的数据,其包含多个不同的数组,本文主要使用代表库仑矩阵的X数组和代表每个原子原子序数的Z数组,代码如下:

data = load(data_file)

(二)图数据预处理

从加载的数据结构中提取库仑数据和原子序数,并进行相应变换。

为了将训练数据中的库仑矩阵转换为邻接矩阵。之后对部分数据进行可视化展示,查看分子的相关情况,像提取未填充的邻接矩阵、将原子序数转换为符号并绘图等,代码如下:

nexttile
 plot(G,NodeLabel=symbols,Layout="force")

9226586a547d52d5275dd80ccd032172.png


点击标题查阅往期内容

cfe2b9bccca844f5698333092326aa0b.jpeg

R语言KERAS深度学习CNN卷积神经网络分类识别手写数字图像数据(MNIST)

outside_default.png

左右滑动查看更多

outside_default.png

01

96cc4bfaa74c8b8e22a2dbc0e80efc1d.png

02

10c2fa7da7c5a1b0e265dc887b0fdd9a.png

03

85d649303dda36904febd3e77ed13db6.png

04

b143f6458cf99db130139f2a4d7013cf.png

利用直方图可视化各标签类别的频率,代码如下:

figure
histogram(categorical(atomicSymbol(atom_data)))

cebb19747b3cc6b704b83a85d8498abb.png
对数据进行划分,分为训练集、验证集和测试集,分别包含80%、10%和10%的数据。

模型构建

(一)深度学习模型定义

定义的深度学习模型输入为邻接矩阵A和特征矩阵X,输出分类预测结果。模型是一系列形如 Zl+1=σl(D^−1/2A^D^−1/2ZlWl)+Zl的操作组合,其中涉及激活函数、权重矩阵等不同元素。

(二)模型参数初始化

创建结构来存放模型参数,并利用函数(本文附属文件)初始化各乘法操作的可学习权重:

parameters = struct()
num\_hidden\_feature_maps = 32

(三)模型相关函数定义

创建函数,其输入模型参数、特征数据和邻接矩阵,返回预测结果;输入模型参数、特征数据、邻接矩阵以及独热编码目标,返回损失、损失相对于参数的梯度和网络预测;另外还有函数,它们各自在模型的训练、预测等环节发挥重要作用。

模型训练

设定训练轮数为1500轮,学习率为0.01,每300轮验证一次网络。初始化Adam相关参数,将训练和验证特征数据转换为特定对象格式,若有可用GPU则将数据转换到GPU上进行训练,同时将训练和验证标签转换为独热编码向量,并初始化训练进度监测对象。然后利用自定义训练循环训练模型,在每一轮中进行模型损失和梯度评估、更新网络参数、更新训练绘图以及按要求验证网络等操作:

num_epochs = 1500
learn_rate = 0.01
validation_frequency = 300
trailing_avg = \[\]
trailing\_avg\_sq = \[\]

5db1a6f7796b4a72f68ffef176fb0256.png

模型测试与预测

(一)模型测试

使用测试数据对模型进行测试,先按照训练和验证数据的处理步骤预处理测试数据,将测试特征数据转换为相应对象格式,利用模型进行预测并将概率转换为分类标签,最后计算准确率,还通过混淆矩阵等方式可视化模型的预测情况,评估模型基于类别精度和召回率等指标的表现。

计算混淆矩阵:

figure
cm = confusionchart(labels\_test,Y\_test,

6c5c4b2826e14c1ea291e1a2cab9e3d4.png

(二)新数据预测

利用函数对未标记数据进行预测,选择测试数据的前几个观测值简单示例,可视化预测结果,将预测结果作为节点标签绘制分子的图表示:

num\_observations\_new = 4
adjacency\_data\_new = adjacency\_data\_test\[:,:,1:num\_observations\_new\]

4b613b960da80c089896b261a7aece0d.png

总结

本文通过对数据集完整的处理、基于图卷积网络的模型构建、训练及测试等流程展示,呈现了图中节点分类任务的实现过程及相关方法应用。结果表明模型在该任务中有一定的准确率等表现,后续可进一步探索优化模型结构、改进数据处理方式等方面,以提升模型在节点分类任务中的性能,更好地应用于如化学分子结构分析等诸多领域。

参考文献

[1] Kipf, Thomas N., and Max Welling. “Semi-Supervised Classification with Graph Convolutional Networks.” Paper presented at ICLR 2017, Toulon, France, April 2017.
[2] Blum, Lorenz C., and Jean-Louis Reymond. “970 Million Druglike Small Molecules for Virtual Screening in the Chemical Universe Database GDB-13.” Journal of the American Chemical Society 131, no. 25 (July 1, 2009): 8732–33. https://doi.org/10.1021/ja902302h.
[3] Rupp, Matthias, Alexandre Tkatchenko, Klaus-Robert Müller, and O. Anatole von Lilienfeld. “Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning.” Physical Review Letters 108, no. 5 (January 31, 2012): 058301. https://doi.org/10.1103/PhysRevLett.108.058301.

622b04101fab9c147c3a6ef8d6ab7369.jpeg

本文中分析的数据、代码分享到会员群,扫描下面二维码即可加群! 

f117bae4565a149b35742e711a1c7478.png


资料获取

在公众号后台回复“领资料”,可免费获取数据分析、机器学习、深度学习等学习资料。

84877ba5aa81fd9c8ff67abf8b6e77ad.jpeg

点击文末“阅读原文”

获取全文完整代码数据资料。

本文选自《MATLAB图卷积网络GCN处理分子数据集节点分类研究》。

点击标题查阅往期内容

PYTHON TENSORFLOW 2二维卷积神经网络CNN对图像物体识别混淆矩阵评估|数据分享

R语言深度学习卷积神经网络 (CNN)对 CIFAR 图像进行分类:训练与结果评估可视化

R语言KERAS深度学习CNN卷积神经网络分类识别手写数字图像数据(MNIST)

MATLAB中用BP神经网络预测人体脂肪百分比数据

Python中用PyTorch机器学习神经网络分类预测银行客户流失模型

R语言实现CNN(卷积神经网络)模型进行回归数据分析

SAS使用鸢尾花(iris)数据集训练人工神经网络(ANN)模型

【视频】R语言实现CNN(卷积神经网络)模型进行回归数据分析

Python使用神经网络进行简单文本分类

R语言用神经网络改进Nelson-Siegel模型拟合收益率曲线分析

R语言基于递归神经网络RNN的温度时间序列预测

R语言神经网络模型预测车辆数量时间序列

R语言中的BP神经网络模型分析学生成绩

matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类

R语言实现拟合神经网络预测和结果可视化

用R语言实现神经网络预测股票实例

使用PYTHON中KERAS的LSTM递归神经网络进行时间序列预测

python用于NLP的seq2seq模型实例:用Keras实现神经网络机器翻译

用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类

781dd4e4a4f570911bf7affadd35df62.jpeg

f6f249d833262cf0d25ebd3bbf34352a.png

1308ac519b778606c8c8a1c0f82ff7be.png

df3cec705896cb0fa107627389042982.jpeg

292a89cb3b728348cd412c2d7bc95e35.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/936623.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

简易CPU设计入门:本系统所写入的指令

项目代码下载 请大家首先准备好本项目所用的源代码。如果已经下载了,那就不用重复下载了。如果还没有下载,那么,请大家点击下方链接,来了解下载本项目的CPU源代码的方法。 下载本项目代码 准备好了项目源代码以后,我…

rabbitMq举例

新来个技术总监,把 RabbitMQ 讲的那叫一个透彻,佩服! 生产者 代码举例 public String sendMsg(final String exchangeName,final String routingKey,final String msg) {} /*** 发送消息* param exchangeName exchangeName* param routin…

对话小系统(智能图书助手)

对话小系统(智能图书助手) 文章说明核心代码效果展示源码下载 文章说明 现在GPT的功能十分强大,是否可以利用开源的接口来实现自己的智能小助手呢,我想到可以提供一些能力接口,然后对问询内容进行意图识别,…

数智读书笔记系列006 协同进化:人类与机器融合的未来

书名:协同进化:人类与机器融合的未来 作者:[美]爱德华阿什福德李 译者:李杨 出版时间:2022-06-01 ISBN:9787521741476 中信出版集团制作发行 爱德华・阿什福德・李(Edward Ashford Lee)是一位在计算机科学与工程领域颇具影响力的学者&am…

C# 探险之旅:第二十七节 - 类型class(属性) —— 给你的类穿上“属性”的外衣

嘿,探险家们!欢迎再次踏上我们的C#奇幻之旅。今天,我们要聊聊一个超级有趣的话题——类的“属性”。想象一下,如果我们要给类穿上一件酷炫的外衣,那属性就是这件外衣上的各种口袋和装饰,让类变得既实用又拉…

数据保护策略:如何保障重要信息的安全

一、什么是数据安全? 数据安全是保护数字信息免遭盗窃、未经授权的访问和恶意修改的过程。这是一个持续的过程,负责监督信息的收集、存储和传输。 机密性:保护数据免遭未授权方访问。 完整性:保护数据免遭未经授权的修改、损坏…

Mvc、Springmvc框架

一.Mvc: 1.概念: MVC它是一种设计理念。把程序按照指定的结构来划分: Model模型 、View视图 、Controller控制层; 结构图: 二.Springmvc: 1.概念: springmvc框架它是spring框架的一个分支。它是按照mvc架构思想设计…

【CSS in Depth 2 精译_078】12.6 调整字间距,提升可读性 + 12.7 本章小结

当前内容所在位置(可进入专栏查看其他译好的章节内容) 第四部分 视觉增强技术 ✔️【第 12 章 CSS 排版与间距】 ✔️ 12.1 间距设置 12.1.1 使用 em 还是 px12.1.2 对行高的深入思考12.1.3 行内元素的间距设置 12.2 Web 字体12.3 谷歌字体12.4 font-fac…

Python高性能web框架-FastApi教程:(2)路径操作装饰器方法

路径操作装饰器方法 1. fastapi支持的各种请求方式 app.get() app.post() app.put() app.patch() app.delete() app.options() app.head() app.trace()2. 定义不同请求方式的路由 # 定义GET请求的路由 app.get(/get) def get_test():return {method: get方法} app.get(/get)…

PostgreSQL 入门

下载与安装 部分国产数据库采用PostgreSQL作为基础进行研发,因此先尝试了解一下原始数据库情况。 PostgreSQL 简称 PG 官网:https://www.postgresql.org/ PostgreSQL “世界上最先进的开源关系型数据库” 这是官网上的口号。 PostgreSQL: The World…

Java-26 深入浅出 Spring - 实现简易Ioc-02 无IoC与AOP场景下实现业务

点一下关注吧!!!非常感谢!!持续更新!!! 大数据篇正在更新!https://blog.csdn.net/w776341482/category_12713819.html 目前已经更新到了: MyBatis&#xff…

工作流审批功能全解析:提升流程效率的关键要素

1. 引言 在当今数字化时代,企业与组织的运营效率在很大程度上依赖于高效、精准的工作流审批系统。随着业务日益复杂且多样化,审批流程变得愈加细致和灵活。一个完善的工作流审批系统不仅能确保任务在组织内部有序流转、协调各方资源,还能实现…

API接口示例:电商商品评论数据

当然,以下是一个简化的电商商品评论数据API接口的示例。请注意,这只是一个示例,实际的API接口可能会更加复杂,并且会包含更多的验证、错误处理和安全措施。 API接口示例:电商商品评论数据 基础信息 API名称&#xf…

HCIA-Access V2.5_2_2_2网络通信基础_IP编址与路由

网络层数据封装 首先IP地址封装在网络层,它用于标识一台网络设备,其中IP地址分为两个部分,网络地址和主机地址,通过我们采用点分十进制的形式进行表示。 IP地址分类 对IP地址而言,它细分为五类,A,B,C,D,E,…

Microsemi Libero使用技巧11——CoreUARTAPB RX管脚分配时不显示

调用串口IP核CoreUARTAPB,并例化到顶层设计,发现UART_RX管脚在进行管脚分配时没有显示出来,最后发现是CoreAPB3总线IP核配置不对导致,改为如下配置后正常。

SEGGER | 基于STM32F405 + Keil - RTT组件01 - 移植SEGGER RTT

导言 RTT(Real Time Transfer)是一种用于嵌入式中与用户进行交互的技术,它结合了SWO和半主机的优点,具有极高的性能。 使用RTT可以从MCU非常快速输出调试信息和数据,且不影响MCU实时性。这个功能可以用于很多支持J-Link的设备和MCU&#xff0…

SpringBoot集成JWT和Redis实现鉴权登录功能

目前市面上有许多鉴权框架,鉴权原理大同小异,本文简单介绍下利用JWT和Redis实现鉴权功能,算是抛砖引玉吧。 主要原理就是“令牌主动失效机制”,主要包括以下4个步骤: (1)利用拦截器LoginInterceptor实现所有接口登录拦…

29.在Vue 3中使用OpenLayers读取WKB数据并显示图形

在Web开发中,地理信息系统(GIS)应用越来越重要,尤其是在地图展示和空间数据分析的场景中。OpenLayers作为一个强大的开源JavaScript库,为开发者提供了丰富的地图展示和空间数据处理能力。在本篇文章中,我将…

【bWAPP】 HTML Injection (HTML注入)

我们都是在一条铺满荆棘的新路上摸索着前行,碰个鼻青眼肿几乎不可避免,而问题在于,我们能不能在这条路上跌倒之后,爬起来继续走下去。 HTML Injection - Reflected (GET) get方式的html代码注入 漏洞url:http://ran…

内网是如何访问到互联网的(华为源NAT)

私网地址如何能够访问到公网的? 在上一篇中,我们用任意一个内网的终端都能访问到百度的服务器,但是这是我们在互联网设备上面做了回程路由才实现的,在实际中,之前也说过运营商是不会写任何路由过来的,那对于…