校招算法题实在不会做,有没有关系?

文章目录

    • 前言
    • 一、校招
    • 二、时间复杂度
      • 1、单层循环
      • 2、双层循环
    • 三、空间复杂度
    • 四、数据结构
    • 五、校招算法题实在不会做,有没有关系?
    • 六、英雄算法集训

前言

英雄算法联盟八月集训 已经接近尾声,九月算法集训将于 09月01日 正式开始,目前已经提前开启报名,报名方式见 这里,想要参加的建议提早报名,因为对于算法零基础的同学会有一些提前的准备工作,比如需要1 - 3天的时间完成预训练 和 九日集训 提前养成刷题的习惯,再参加算法集训会更加有成效。

一、校招

  对于校招,很多同学最惧怕的莫过于算法题了,因为很多题目,虽然感觉似曾相识,但是题型千变万化,加上紧张的氛围,原本会做的算法也不会了,从而和这次招聘失之交臂。
  那么算法在平时工作中,到底起多大的作用?是否一定要学呢?这个应该是绝大多数同学最困惑的问题,看完这篇文章,你的心中或许会有一定的答案。

二、时间复杂度

  但凡写过代码的同学都知道,如果一段代码执行效率低,那么在函数层层嵌套下,整个函数执行完的时间就会变长,就有可能出现未响应的情况。

  如果一个软件,每一步操作都非常耗时,给人的体验就是非常卡,那么这款软件最终的归宿就是走向灭亡,所以 执行效率 对于编程来说是至关重要的,而这里的执行效率就对应的算法的时间复杂度。

1、单层循环

  所谓穷举法,就是我们通常所说的枚举,就是把所有情况都遍历了(跑到)的意思。举个最简单的例子:

【例题1】给定 n ( n ≤ 1000 ) n(n \le 1000) n(n1000) 个元素 a i a_i ai,求其中 奇数 有多少个。

  判断一个数是偶数还是奇数,只需要求它除上 2 的余数是 0 还是 1,那么我们把所有数都判断一遍,并且对符合条件的情况进行计数,最后返回这个计数器就是答案,这里需要遍历所有的数,这就是穷举。如图所示:

  c/c++ 代码实现如下:

int countOdd(int n, int a[]) {
    int cnt = 0;
    for(int i = 0; i < n; ++i) {
        if(a[i] & 1)
            ++cnt;
    }
    return cnt;
}

  其中a & 1等价于a % 2,代码a模 2 的余数;而这个算法的时间复杂度就是 O ( n ) O(n) O(n)

2、双层循环

  经过上面的例子,相信你对穷举法已经有一定的理解,那么我们来看看稍微复杂一点的情况。

【例题2】给定 n ( n ≤ 1000 ) n(n \le 1000) n(n1000) 个元素 a i a_i ai,求有多少个二元组 ( i , j ) (i,j) (i,j),满足 a i + a j a_i + a_j ai+aj 是奇数 ( i < j ) (i \lt j) (i<j)

  我们还是秉承穷举法的思想,这里需要两个变量 i i i j j j,所以可以枚举 a i a_i ai a j a_j aj,再对 a i + a j a_i + a_j ai+aj 进行奇偶性判断,所以很快设计出一个利用穷举的算法。如图所示:

  c/c++ 代码实现如下:

int countOddPair(int n, int a[]) {
    int cnt = 0;
    for(i = 0; i < n; ++i) {
        for(j = i+1; j < n; ++j) {
            if( (a[i] + a[j]) & 1)
                ++cnt;
        }
    }
    return cnt;
}

而这个算法的时间复杂度就是 O ( n 2 ) O(n^2) O(n2)。简单来说,通过循环的嵌套次数,可以大致估计出一个算法的时间复杂度。

三、空间复杂度

  而当我们在玩一个游戏的时候,这个游戏占据的内存越大,对我们的机器要求就越高,要求越高,用户自然就越少,所以内存的占用也是至关重要的,这正是对应的算法的空间复杂度。这里就不再展开了。

四、数据结构

  选择合适的数据结构,在有效的权衡 时间复杂度 和 空间复杂度,设计出合适的算法来解决问题,这是我们编程设计需要思考的事情。
  很多人问我,数据结构和算法 同 人工智能 中的那些算法有什么区别,两者有联系也有区别,前者是基础,每个学计算机的同学都应该掌握,在工作中会帮助你更好的理解问题,剖析原理。后者相对较难,如果不是将来要从事相关工作,可能基本用不到它。
  为什么很多人学不好数据结构?原因就是没有从本质去理解数据结构的概念,任何一种算法都会对应一种数据结构。例如二分查找对应的是顺序表(因为不可能在链表上执行二分查找)、递归对应的是树、最短路对应的是图。
  而核心的数据结构就只有三种:线性表、树、图。
  再抽象一点,其实只有一种数据结构,就是图。
  图就是由 顶点 和 边 构成的网络,像这样。如果一个图中任意两点间都可达,就叫连通图。从一个点经过若干的不重复边,回到自己,我们叫它圈,没有圈的图,实际上就是一棵树。

  我们适当调整它的位置,就成了我们现实中的树,而把树的枝干剪掉,就变成了一个线性的结构,这就成了线性表。
  平时上课的时候都是从 线性表 讲到 图,而当我们逆向思考发现,所有的数据结构,本质都是图。并且所有的数据结构按照存储方式,既可以用顺序的方式进行存储,也可以用链式的方式进行存储。
  而 栈 和 队列 是两种线性表;树则根据分叉数量,可以是 二叉树、三叉树、四叉树、… ,其中 二叉树最为常见,二叉搜索树必须掌握,并且自己能够手写它的常见遍历;平衡二叉树是效率最高的二叉搜索树,平时没遇到是因为很多库都给你封装好了,像 C++ 中的 map 底层实现红黑树就是一种平衡二叉树,哈希表在冲突时拉链也有可能转化成平衡二叉树;堆则是一种完全二叉树,应用在优先队列中,如 C++ 中的 priority_queue;图主要分为有向图、无向图,其上的算法有很多,比较经典的是最短路和最小生成树。

五、校招算法题实在不会做,有没有关系?

  这个问题,取决于你在准备的过程中是否尽力了,如果因为不会就放弃,躺平,那么关系很大;如果已经尽力了,还是做不出来,那可能真的是天赋的问题,这个是很难改善的,要通过后期巨大的努力才行,而目前很多校招算法题,一定是往难了出的,你会发现就算是面试官,在之前没有接触到这道题的时候,他也不见得能做出来,毕竟实际工作中,不会给你一道题,而是给你一个实际的问题,需要抽丝剥茧,逐渐将问题简化,最终通过合适的方法来解决它。
  所以,如果你正在为这些校招的算法题不会做而焦虑,其实也不必太焦虑,用焦虑的时间尽量多写一点代码,如果算法学不好,可以尝试做一些小项目,例如俄罗斯方块,打砖块,三消这些小游戏,自己能写尽量自己写,在实现一个一个小游戏的时候,你会发现其中每一步都充斥着算法,只是没有那么生硬,会更好的理解和掌握相关的知识点。

能学一点是一点,基础的算法也就这么多了。
在这里插入图片描述
基础的数据结构

这两大块内容搞懂基本就OK了。

六、英雄算法集训

  往期的算法集训,根据学员的反馈,一天一个算法实在太难吃透了,所以从六月集训开始,我们开始有针对性的去做训练,并不一定每个月要把所有算法学完,而是把会的算法学透,给大家充足的时间来学习和刷题。
  每天的任务,主要分为以下几个步骤:
    1、相关资料阅读;
    2、观看星主刷题视频;
    3、刷完星主布置的课后习题(每天1-4题);
    4、在星球发布每日总结和复盘;
    5、提交作业打卡;

  九月的集训内容为基础算法。参加八月集训时,六七八月集训的所有内容均可 永久观看,并且承诺可以继续参加 和 十月、十一月 的集训(十二月以后的规划后续会放出,今天报名以后,同样可以参加)。所以这点可以放心,不用担心自己跟不上以后就再也跟不上了。八月集训的内容,已经归档,可以在 星球 随时查看。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/93009.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

项目经理——任劳任怨的“背锅侠”

很多人可能觉得项目经理在工作中只需要动动嘴皮子&#xff0c;然后跟其他关系人搞好关系就行了&#xff0c;但是其实他们负责整个项目的规划、执行和交付&#xff0c;是整个项目顺利进行的关键。然而&#xff0c;在项目中面临着各种各样的挑战和压力。那么&#xff0c;作为项目…

MyBatis之动态sql

目录 一、MyBatis动态sql 1.1 是什么 1.2 作用 1.3 优点 1.4 特殊标签 1.5 代码演示 二、#和$的区别 2.1 #使用 2.2 $使用 2.3 综合 2.4 代码演示 三、resultType与resultMap的区别 3.1 关于resultType 3.2 关于resultMap 3.3 两者区别 3.4 代码演示 一、MyBati…

【JavaEE基础学习打卡06】JDBC之进阶学习PreparedStatement

目录 前言一、PreparedStatement是什么二、重点理解预编译三、PreparedStatement基本使用四、Statement和PreparedStatement比较1.PreparedStatement效率高2.PreparedStatement无需拼接参数3.PreparedStatement防止SQL注入 总结 前言 &#x1f4dc; 本系列教程适用于JavaWeb初学…

StableVideo:使用Stable Diffusion生成连续无闪烁的视频

使用Stable Diffusion生成视频一直是人们的研究目标&#xff0c;但是我们遇到的最大问题是视频帧和帧之间的闪烁&#xff0c;但是最新的论文则着力解决这个问题。 本文总结了Chai等人的论文《StableVideo: Text-driven consistency -aware Diffusion Video Editing》&#xff…

【Java集合学习1】ArrayList集合学习及集合概述分析

JavaArrayList集合学习及集合学习概述 一、Java集合概述 Java 集合&#xff0c; 也叫作容器&#xff0c;主要是由两大接口派生而来&#xff1a;一个是 Collection接口&#xff0c;主要用于存放单一元素&#xff1b;另一个是 Map 接口&#xff0c;主要用于存放键值对。对于Col…

Kubernetes(K8S)使用PV和PVC做存储安装mysql

Kubernetes使用PV和PVC做存储安装mysql 环境准备什么是PV和PVC环境准备配置nfs安装nfs配置nfs服务端 创建命名空间配置pv和pvcpv的yaml文件pvc的yaml文件 部署mysql创建mysql的root密码的secret创建mysql部署的yaml部署mysql链接mysql外部链接内部链接 环境准备 首先你需要一个…

Feign在实际项目中使用详解

Feign在实际项目中使用详解 简介一 Feign客户端应该如何提供&#xff1f;二 Feign调用的接口要不要进行包装&#xff1f;2.1.问题描述2.2.问题解决 三 Feign如何抓取业务生产端的业务异常&#xff1f;3.1.分析3.2.Feign捕获不到异常3.3.异常被额外封装3.4.解决方案 案例源码 简…

4.网络设计与redis、memcached、nginx组件(一)

网络组件系列文章目录 第四章 网络设计与redis、memcached、nginx组件 文章目录 网络组件系列文章目录文章的思维导图前言一、网络相关的问题&#xff0c;网络开发中要处理那些问题&#xff1f;网络操作IO连接建立连接断开消息到达消息发送网络操作IO特性 二、网络中IO检测IO函…

springboot整合rabbitmq死信队列

springboot整合rabbitmq死信队列 什么是死信 说道死信&#xff0c;可能大部分观众大姥爷会有懵逼的想法&#xff0c;什么是死信&#xff1f;死信队列&#xff0c;俗称DLX&#xff0c;翻译过来的名称为Dead Letter Exchange 死信交换机。当消息限定时间内未被消费&#xff0c;…

上门服务系统|上门服务小程序如何提升生活质量?

上门服务其实就是本地生活服务的升级&#xff0c;上门服务包含很多行业可以做的。例如&#xff1a;厨师上门、上门家电维修、跑腿等等。如今各类本地化生活服务越来越受大家的喜爱。基于此市场愿景&#xff0c;我们来谈谈上门服务系统功能。 一、上门服务系统功能 1、预约服务…

Go 第三方库引起的线上问题、如何在线线上环境进行调试定位问题以及golang开发中各种问题精华整理总结

Go 第三方库引起的线上问题、如何在线线上环境进行调试定位问题以及golang开发中各种问题精华整理总结。 01 前言 在使用 Go 语言进行 Web 开发时&#xff0c;我们往往会选择一些优秀的库来简化 HTTP 请求的处理。其中&#xff0c;go-resty 是一个被广泛使用的 HTTP 客户端。…

Jetpack Compose UI架构

Jetpack Compose UI架构 引言 Jetpack Compose是我职业生涯中最激动人心的事。它改变了我工作和问题思考的方式&#xff0c;引入了易用且灵活的工具&#xff0c;几乎可轻松实现各种功能。 早期在生产项目中尝试了Jetpack Compose后&#xff0c;我迅速着迷。尽管我已有使用Co…

信息化发展2

信息系统生命周期 1 、软件的生命周期通常包括&#xff1a;可行性分析与项目开发计划、需求分析、概要设计、详细设计、编码、测试、维护等阶段。 2 、信息系统的生命周期可以简化为&#xff1a;系统规划&#xff08;可行性分析与项目开发计划&#xff09;&#xff0c;系统分析…

基于Pytorch的神经网络部分自定义设计

一、基础概念&#xff08;学习笔记&#xff09; &#xff08;1&#xff09;训练误差和泛化误差[1] 本质上&#xff0c;优化和深度学习的目标是根本不同的。前者主要关注的是最小化目标&#xff0c;后者则关注在给定有限数据量的情况下寻找合适的模型。训练误差和泛化误差通常不…

机器学习十大算法之七——随机森林

0 引言 集成学习&#xff08;ensemble learning&#xff09;是时下非常流行的机器学习算法&#xff0c;它本身不是一个单独的机器学习算法&#xff0c;而是通过在数据上构建多个横型&#xff0c;集成所有模型的建模结果&#xff0c;基本上所有的机器学习领域都可以看到集成学习…

Docker部署gogs仓库

Docker部署gogs Git仓库 拉取镜像 docker pull gogs/gogs查看本地镜像 docker images启动gogs仓库服务 创建数据挂在目录 我在/root目录下创建gogs挂在目录 mkdir gogs启动gogs docker run --namegogs -d -p 10022:22 -p 10880:3000 -v /root/gogs:/data gogs/gogs10022…

破除“中台化”误区,两大新原则考核中后台

近年来&#xff0c;“中台化”已成为许多企业追求的目标&#xff0c;旨在通过打通前后台数据和业务流程&#xff0c;提升运营效率和创新能力。然而&#xff0c;在实施过程中&#xff0c;一些误解可能导致“中台化”未能如预期般发挥作用。本文将探讨这些误解&#xff0c;并提出…

兄弟,王者荣耀的段位排行榜是通过Redis实现的?

目录 一、排行榜设计方案1、数据库直接排序2、王者荣耀好友排行 二、Redis实现计数器1、什么是计数器功能&#xff1f;2、Redis实现计数器的原理&#xff08;1&#xff09;使用INCR命令实现计数器&#xff08;2&#xff09;使用INCRBY命令实现计数器 三、通过Redis实现“王者荣…

Pycharm链接远程mysql报错

Pycharm链接远程mysql配置及相应报错如下&#xff1a; 解决方法&#xff1a; 去服务器确认Mysql版本号&#xff1a; 我的Mysql为5.7.43&#xff0c;此时Pycharm mysql驱动为8.0版本&#xff0c;不匹配&#xff0c;所以需要根据实际的版本选择对应的驱动&#xff1b;选择对应的版…

【Java架构-包管理工具】-Maven私服搭建-Nexus(三)

本文摘要 Maven作为Java后端使用频率非常高的一款依赖管理工具&#xff0c;在此咱们由浅入深&#xff0c;分三篇文章&#xff08;Maven基础、Maven进阶、私服搭建&#xff09;来深入学习Maven&#xff0c;此篇为开篇主要介绍Maven私服搭建-Nexus 文章目录 本文摘要1. Nexus安装…