【语音识别】Zipformer

Zipformer 是kaldi 团队于2024研发的序列建模模型。相比较于 Conformer、Squeezeformer、E-Branchformer等主流 ASR 模型,Zipformer 具有效果更好、计算更快、更省内存等优点。并在 LibriSpeech、Aishell-1 和 WenetSpeech 等常用数据集上取得了当时最好的 ASR 结果。

目录

一.方法

1. Down sampled encoder structure

2. Zipformer block

3. BiasNorm

4. Swoosh 激活函数

5. ScaledAdam


论文地址:https://arxiv.org/pdf/2310.11230.pdf

项目地址:https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/zipformer

一.方法

Zipformer的整体框架如下图所示。

不同于 Conformer 只处理固定帧率 25Hz ,Zipformer 采用了1个类似于 U-Net 的结构,在不同帧率上学习时域表征。

首先,Conv-Embed 将输入的 100Hz 的声学特征下采样为 50 Hz 的特征序列;然后,由 6 个连续的 encoder stack 分别在 50Hz、25Hz、12.5Hz、6.25Hz、12.5Hz 和 25Hz 的采样率下进行时域建模。除了第1个 stack 外,其他的 stack 都采用了降采样的结构。在 stack 与 stack 之间,特征序列的采样率保持在 50Hz。不同的 stack 的 embedding 维度不同,中间stack 的 embedding 维度更大。每个 stack 的输出通过截断或者补零的操作,来对齐下1个 stack 的维度。Zipformer 最终输出的维度,取决于 embedding 维度最大的stack。

1. Down sampled encoder structure

•Conv-Embed

使用3个2-D卷积层,其时间×频率步长分别为1×2、2×2和1×2,输出通道分别为8、32和128。随后,利用了一个类似于Nextformer的ConvNeXt层,该层由1个kernel大小为7×7的深度卷积、1个具有384个输出通道的点卷积、1个SwooshL激活函数和1个具有128个输出通道的点卷积组成。在ConvNeXt模块上应用了残差连接。最后,使用1个线性层,后面跟着1个BiasNorm,以调整特征维度,使其与第1个stack相匹配。

•Downsampled stacks

对于降采样的 encoder stack,成对出现的 Downsample 和 Upsample 模块负责将特征长度对称地缩放。当降采样率为 2 时,Downsample 学习2个标量权重用来将相邻的2帧加权求和;Upsample 将每1帧复制为2帧。最后,通过1个 Bypass 模块整合 stack 的输入和输出。

2. Zipformer block

Zipformer block的结构如下图左侧所示。

Zipformer block深度大约是 Conformer block 的2倍。具体地,block 输入先被送到 MHAW 模块计算注意力权重attention weights,attention weights作为NLA 模块和 SA 模块的输入。同时,block 输入也被送到 feed-forward 模块,后接 NLA 模块和2个连续的模块组(SA + convolution + feed-forward)。最后,由1个 BiasNorm 模块对block 输出进行 normalize操作。除了残差连接,每个 Zipformer block 使用2个 Bypass 模型,用于结合 block 输入和中间模块的输出,分别位于 block 的中间和尾部。

•Non-Linear Attention

上图右侧为Non-Linear Attention的结构。利用 MHAW 模块计算好的注意力权重,沿着时间轴汇聚不同帧的向量。 具体而言,使用3个 linear 将输入转换为 A、B、C,每个的维度为输入维度的 3/4 倍。模块的输出为 linear(A\odot attention(\tanh (B)\odot C)),⊙ 表示点乘,attention 表示利用1个注意力头的权重对不同帧汇聚, linear layer 负责恢复特征的维度。

•Bypass

Bypass 模块学习1个逐通道的权重 c,结合模块输入x 和模块输出y:(1-c)\odot x+c\odot y 。在训练早期通过约束   c的最小值让模块接近 “straight-through” 有助于稳定模型训练。

3. BiasNorm

提出 BiasNorm 模块来替换 LayerNorm:

其中, b是可学习的逐通道的 bias, RMS[x-b]是通道的均方根值,\gamma是1个可学习的标量。

4. Swoosh 激活函数

提出2个新的激活函数用于代替 Swish,分别称为 SwooshR 和 SwooshL。

在 SwooshR 函数中,偏移值 0.313261687 是为了让函数经过原点;在 SwooshL函数中,偏移量 0.035 是经过实验得到的。

如下图所示,SwooshL 近似于 SwooshR 向右偏移得到的。

把 SwooshL 用在 “normally-off” 的模块(feed-forward 和 ConvNeXt)中,把 SwooshR 用在convolution 和 Conv-Embed 中其余的部分。

5. ScaledAdam

提出1个 Adam 优化器的 parameter-scale-invariant 版本,称为 ScaledAdam,可以加快模型收敛。

f(\theta )  为我们想要优化的 loss 函数,它对参数 \theta是可导的。在每个步骤t ,Adam 计算参数梯度 g(t)=\bigtriangledown _{\theta }f(\theta _{t-1}),并更新梯度的一阶动量m(t)=\beta _{1}m _{t-1} +(1-\beta _{1})g_{t}  和二阶动量v(t)=\beta _{2}v _{t-1} +(1-\beta _{2})g_{t}^{2} ,此处, \beta _{1}\beta _{2}表示控制动量更新的系数。Adam 在步骤 t 的参数更新量\Delta _{t}为:

 \alpha _{t}通常由外部的 LR schedule 控制, \frac{\sqrt{1-\beta _{2}^{t}}}{1-\beta _{1}^{t}}为偏置纠正项。

•Scaling update

为了确保不同 scale 的参数的相对变化量  \frac{\Delta _{t}}{r_{t-1}}一致,在参数更新量中引入参数的 scale,来放缩更新量\Delta _{t}

•Learning parameter scale

r _{t-1}更新到r _{t}对参数\theta带来的变化为\Delta _{t,r}^{'}=(r_{t}-r_{t-1})\odot \theta _{t-1}^{'}

其中,\eta是学习率\alpha _{t}的缩放参数,值为0.1时有助于稳定训练。

•Eden schedule

Eden schedule的公式如下:

其,t为 step,e为 epoch,\alpha _{step}\alpha _{epoch}分别控制学习率在哪个 step 和 epoch 开始快速下降,
linear(\alpha _{start},t _{warmup},t)表示1个线性 warmup,起点为\alpha _{start} ,经过 t _{warmup}个 step 变为 1。
\alpha _{base}表示当没有 warmup 的情况下学习率的最大值。

•Efficient implementation

为了加快 ScaledAdam 计算,我们将参数根据 shape 分组,按照 batch 进行参数更新。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/927680.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

UIE与ERNIE-Layout:智能视频问答任务初探

内容来自百度飞桨ai社区UIE与ERNIE-Layout:智能视频问答任务初探: 如有侵权,请联系删除 1 环境准备 In [2] # 安装依赖库 !pip install paddlenlp --upgrade !pip install paddleocr --upgrade !pip install paddlespeech --upgrade In …

VUE前端实现天爱滑块验证码--详细教程

第一步: Git地址:tianai-captcha-demo: 滑块验证码demo 找到目录 src/main/resources/static,拷贝 static 并改名为 tac 即可。 第二步: 将改为 tac 的文件,放进项目根目录中,如下图: 第三步&#xff1…

【CSS】一篇掌握CSS

不是因为有了希望才去坚持,而是坚持了才有了希望 目录 一.导入方式 1.行内样式 2.内部样式 3.外部样式(常用) 二.选择器 1.基本选择器(常用) 1.1标签选择器 1.2类选择器 1.3id选择器 2.层次选择器 2.1后代选择器 2.2子选择器 2.3相邻兄弟选择器 2.4通用兄弟选择器…

书生浦语·第四期作业合集

目录 1. Linux基础知识 1.1-Linux基础知识 1.在终端通过ssh 端口映射连接开发机 2. 创建helloworld.py 3.安装相关包并运行 4.端口映射并访问相关网页

vue.js学习(day 18)

实例:面经基础版

初窥 HTTP 缓存

引言 对于前端来说, 你肯定听说过 HTTP 缓存。 当然不管你知不知道它, 对于提高网站性能和用户体验, 它都扮演着重要的角色! 它通过在客户端和服务器之间存储和重用先前获取的资源副本, 来减少网络流量和降低资源加载时间, 从而提升用户体验! 以下是 HTTP 缓存的重要性: 减少…

Ubuntu在NVME硬盘使用Systemback安装记录

问题 使用Systemback重装系统找不到NVME硬盘。 0.使用Systemback制作iso后,制作启动盘 1.插入启动盘进入live mode模式 2.安装gparted sudo apt-get update sudo apt-get install gparted3.使用gparted对待分区硬盘进行分区 gparted按照你希望的分区方式分区即…

机器学习8-决策树CART原理与GBDT原理

Gini 系数 和Gini 系数增益 CART决策树算法流程举例 该篇文章对于CART的算法举例讲解,一看就懂。 决策树(Decision Tree)—CART算法 同时也可以观看视频 分类树 GBDT原理举例 可以看如下示例可以理解GBDT的计算原理 用通俗易懂的方式讲解: GBDT算法及…

编译器优化技术

方法内联 逃逸分析 公共子表达式消除 数据边界检查消除

VSCode中“Run Code”运行程序时,终端出现中文乱码解决方法

问题描述 在VSCode中“Run Code”运行程序时,终端输出结果出现中文乱码现象: 解决方法 1. 检查系统cmd的默认编码 查看Windows终端当前编码方式的命令: chcp输出结果是一段数字代码,如936,这说明当前的cmd编码方式…

运维工作常用Shell脚本(Commonly Used Shell Scripts for Operation and Maintenance Work)

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 本人主要分享计算机核心技…

数据分析流程中的Lambda架构,以及数据湖基于Hadoop、Spark的实现

文章目录 一、Lambda架构1、Lambda的三层架构2、简单解释:3、Lambda架构的优缺点 二、数据湖基于Hadoop、Spark的实现1、架构2、数据管理(存储层的辅助功能) 一、Lambda架构 1、Lambda的三层架构 Batch View(批处理视图层&#…

ROS基本框架2——在ROS开发中创建并使用自定义消息(C++版本)

ROS基本框架2——在ROS开发中创建并使用自定义消息(C++版本) code review! 参考笔记 1.ROS基本框架1——编写简单的发布者和订阅者(C++和Python版本) 2.ROS基本框架2——在ROS开发中创建并使用自定义消息(C++版本) 文章目录 ROS基本框架2——在ROS开发中创建并使用自定义…

【Linux 篇】Docker 容器星河与镜像灯塔:Linux 系统下解锁应用部署奇幻征程

文章目录 【Linux 篇】Docker 容器星河与镜像灯塔:Linux 系统下解锁应用部署奇幻征程前言一 、docker上部署mysql1. 拉取mysql镜像2. 创建容器3. 远程登录mysql 二 、docker上部署nginx1. 拉取nginx镜像2. 在dockerTar目录下 上传nginx.tar rz命令3. 创建nginx容器4…

Matlab模块From Workspace使用数据类型说明

Matlab原文连接:Load Data Using the From Workspace Block 模型: 从信号来源的数据: timeseries 数据: sampleTime 0.01; numSteps 1001;time sampleTime*[0:(numSteps-1)]; time time;data sin(2*pi/3*time);simin time…

【计算机网络】实验7:默认路由和特定主机路由以及路由环路问题

实验 7:默认路由和特定主机路由以及路由环路问题 一、 实验目的 了解默认路由以及特定主机路由。 了解静态路由配置错误导致的路由环路问题。 二、 实验环境 • Cisco Packet Tracer 模拟器 三、 实验内容 1、默认路由以及特定主机路由 (1) 第一步&#xff…

kube-proxy的iptables工作模式分析

系列文章目录 iptables基础知识 文章目录 系列文章目录前言一、kube-proxy介绍1、kube-proxy三种工作模式2、iptables中k8s相关的链 二、kube-proxy的iptables模式剖析1.集群内部通过clusterIP访问到pod的流程1.1.流程分析 2.从外部访问内部service clusterIP后端pod的流程2.1…

学习ASP.NET Core的身份认证(基于Session的身份认证3)

开源博客项目Blog中提供了另一种访问控制方式,其基于自定义类及函数的特性类控制访问权限。本文学习并测试开源博客项目Blog的访问控制方式,测试程序中直接复用开源博客项目Blog中的相关类及接口定义,并在其上调整判断逻辑。   首先是接口A…

HTML前端开发-- Flex布局详解及实战

引言 Flex布局,全称为Flexible Box Layout,是一种现代CSS布局技术,它提供了一种更有效的方式来设计响应式布局和复杂页面布局。本文将详细介绍Flex布局的基本概念、属性以及实战应用。 一、基本概念 Flex布局的核心是Flex容器(…

ESG研究报告白皮书与ESG治理报告合集(2020-2023年)

一.资料范围:(1)ESG白皮书及指南;(2)ESG研究报告,(3)ESG治理报告分析(4)上市公司ESG报告(知名企业) 二、资料用途:可以分析研究企业E…