URDF(描述机器人模型)和SDF(Gazebo中用于描述仿真环境)

使用URDF(Unified Robot Description Format)

URDF是ROS中用于描述机器人模型的XML格式文件。你可以使用XML文件定义机器人的几何形状、惯性参数、关节和链接等。

示例URDF文件(my_robot.urdf):

<?xml version="1.0"?>
<robot name="my_robot">
  <link name="base_link">
    <visual>
      <geometry>
        <box size="0.5 0.5 0.2"/>
      </geometry>
      <material name="blue">
        <color rgba="0 0 1 1"/>
      </material>
    </visual>
    <collision>
      <geometry>
        <box size="0.5 0.5 0.2"/>
      </geometry>
    </collision>
    <inertial>
      <mass value="10"/>
      <inertia ixx="1" ixy="0" ixz="0" iyy="1" iyz="0" izz="1"/>
    </inertial>
  </link>

  <joint name="base_to_arm" type="fixed">
    <parent link="base_link"/>
    <child link="arm_link"/>
    <origin xyz="0 0 0.2"/>
  </joint>

  <link name="arm_link">
    <visual>
      <geometry>
        <cylinder radius="0.05" length="0.5"/>
      </geometry>
      <material name="red">
        <color rgba="1 0 0 1"/>
      </material>
    </visual>
    <collision>
      <geometry>
        <cylinder radius="0.05" length="0.5"/>
      </geometry>
    </collision>
    <inertial>
      <mass value="2"/>
      <inertia ixx="0.1" ixy="0" ixz="0" iyy="0.1" iyz="0" izz="0.1"/>
    </inertial>
  </link>
</robot>

使用SDF(Simulation Description Format)

SDF是Gazebo中用于描述仿真环境的XML格式文件。你可以使用SDF定义仿真世界、机器人模型、传感器等。

示例SDF文件(my_world.world):

<?xml version="1.0"?>
<sdf version="1.6">
  <world name="default">
    <include>
      <uri>model://ground_plane</uri>
    </include>

    <include>
      <uri>model://sun</uri>
    </include>

    <model name="my_robot">
      <pose>0 0 0.1 0 0 0</pose>
      <link name="base_link">
        <collision name="base_collision">
          <geometry>
            <box>
              <size>0.5 0.5 0.2</size>
            </geometry>
        </collision>
        <visual name="base_visual">
          <geometry>
            <box>
              <size>0.5 0.5 0.2</size>
            </geometry>
          <material>
            <ambient>0 0 1 1</ambient>
            <diffuse>0 0 1 1</diffuse>
          </material>
        </visual>
        <inertial>
          <mass>10</mass>
          <inertia>
            <ixx>1</ixx>
            <ixy>0</ixy>
            <ixz>0</ixz>
            <iyy>1</iyy>
            <iyz>0</iyz>
            <izz>1</izz>
          </inertia>
        </inertial>
      </link>
      <link name="arm_link">
        <collision name="arm_collision">
          <geometry>
            <cylinder>
              <radius>0.05</radius>
              <length>0.5</length>
            </cylinder>
          </geometry>
        </collision>
        <visual name="arm_visual">
          <geometry>
            <cylinder>
              <radius>0.05</radius>
              <length>0.5</length>
            </cylinder>
          </geometry>
          <material>
            <ambient>1 0 0 1</ambient>
            <diffuse>1 0 0 1</diffuse>
          </material>
        </visual>
        <inertial>
          <mass>2</mass>
          <inertia>
            <ixx>0.1</ixx>
            <ixy>0</ixy>
            <ixz>0</ixz>
            <iyy>0.1</iyy>
            <iyz>0</iyz>
            <izz>0.1</izz>
          </inertia>
        </inertial>
      </link>
      <joint name="base_to_arm" type="fixed">
        <parent>base_link</parent>
        <child>arm_link</child>
        <pose>0 0 0.2 0 0 0</pose>
      </joint>
    </model>
  </world>
</sdf>

下面是一个包含GNSS(全球导航卫星系统)、IMU(惯性测量单元)、LiDAR(激光雷达)和Camera(摄像头)等多种传感器的机器人的.xacro模型文件示例。我们将使用Xacro(XML Macros)来简化模型描述。

1. 创建my_robot.xacro文件

<?xml version="1.0"?>
<robot name="my_robot" xmlns:xacro="http://www.ros.org/wiki/xacro">

  <!-- Robot base link -->
  <link name="base_link">
    <visual>
      <geometry>
        <box size="0.5 0.5 0.2"/>
      </geometry>
      <material name="blue">
        <color rgba="0 0 1 1"/>
      </material>
    </visual>
    <collision>
      <geometry>
        <box size="0.5 0.5 0.2"/>
      </geometry>
    </collision>
    <inertial>
      <mass value="10"/>
      <inertia ixx="1" ixy="0" ixz="0" iyy="1" iyz="0" izz="1"/>
    </inertial>
  </link>

  <!-- GNSS Sensor -->
  <xacro:macro name="gnss_sensor" params="parent xyz rpy">
    <link name="gnss_link">
      <visual>
        <geometry>
          <box size="0.05 0.05 0.02"/>
        </geometry>
        <material name="green">
          <color rgba="0 1 0 1"/>
        </material>
      </visual>
      <collision>
        <geometry>
          <box size="0.05 0.05 0.02"/>
        </geometry>
      </collision>
      <inertial>
        <mass value="0.1"/>
        <inertia ixx="0.001" ixy="0" ixz="0" iyy="0.001" iyz="0" izz="0.001"/>
      </inertial>
    </link>
    <joint name="gnss_joint" type="fixed">
      <parent link="${parent}"/>
      <child link="gnss_link"/>
      <origin xyz="${xyz}" rpy="${rpy}"/>
    </joint>
  </xacro:macro>

  <!-- IMU Sensor -->
  <xacro:macro name="imu_sensor" params="parent xyz rpy">
    <link name="imu_link">
      <visual>
        <geometry>
          <box size="0.05 0.05 0.02"/>
        </geometry>
        <material name="yellow">
          <color rgba="1 1 0 1"/>
        </material>
      </visual>
      <collision>
        <geometry>
          <box size="0.05 0.05 0.02"/>
        </geometry>
      </collision>
      <inertial>
        <mass value="0.1"/>
        <inertia ixx="0.001" ixy="0" ixz="0" iyy="0.001" iyz="0" izz="0.001"/>
      </inertial>
    </link>
    <joint name="imu_joint" type="fixed">
      <parent link="${parent}"/>
      <child link="imu_link"/>
      <origin xyz="${xyz}" rpy="${rpy}"/>
    </joint>
  </xacro:macro>

  <!-- LiDAR Sensor -->
  <xacro:macro name="lidar_sensor" params="parent xyz rpy">
    <link name="lidar_link">
      <visual>
        <geometry>
          <cylinder radius="0.05" length="0.1"/>
        </geometry>
        <material name="gray">
          <color rgba="0.5 0.5 0.5 1"/>
        </material>
      </visual>
      <collision>
        <geometry>
          <cylinder radius="0.05" length="0.1"/>
        </geometry>
      </collision>
      <inertial>
        <mass value="0.5"/>
        <inertia ixx="0.01" ixy="0" ixz="0" iyy="0.01" iyz="0" izz="0.01"/>
      </inertial>
    </link>
    <joint name="lidar_joint" type="fixed">
      <parent link="${parent}"/>
      <child link="lidar_link"/>
      <origin xyz="${xyz}" rpy="${rpy}"/>
    </joint>
  </xacro:macro>

  <!-- Camera Sensor -->
  <xacro:macro name="camera_sensor" params="parent xyz rpy">
    <link name="camera_link">
      <visual>
        <geometry>
          <box size="0.03 0.03 0.03"/>
        </geometry>
        <material name="black">
          <color rgba="0 0 0 1"/>
        </material>
      </visual>
      <collision>
        <geometry>
          <box size="0.03 0.03 0.03"/>
        </geometry>
      </collision>
      <inertial>
        <mass value="0.2"/>
        <inertia ixx="0.001" ixy="0" ixz="0" iyy="0.001" iyz="0" izz="0.001"/>
      </inertial>
    </link>
    <joint name="camera_joint" type="fixed">
      <parent link="${parent}"/>
      <child link="camera_link"/>
      <origin xyz="${xyz}" rpy="${rpy}"/>
    </joint>
  </xacro:macro>

  <!-- Instantiate sensors -->
  <xacro:gnss_sensor parent="base_link" xyz="0.25 0 0.1" rpy="0 0 0"/>
  <xacro:imu_sensor parent="base_link" xyz="0.25 0 0.15" rpy="0 0 0"/>
  <xacro:lidar_sensor parent="base_link" xyz="0.25 0 0.2" rpy="0 0 0"/>
  <xacro:camera_sensor parent="base_link" xyz="0.25 0 0.25" rpy="0 0 0"/>

</robot>

2. 将.xacro文件转换为.urdf文件

您可以使用以下命令将.xacro文件转换为.urdf文件:

rosrun xacro xacro --inorder my_robot.xacro > my_robot.urdf

3. 在Gazebo中加载模型

创建一个.world文件(例如my_world.world)并包含您的机器人模型:

<?xml version="1.0"?>
<sdf version="1.6">
  <world name="default">
    <include>
      <uri>model://ground_plane</uri>
    </include>
    <include>
      <uri>model://sun</uri>
    </include>
    <model name="my_robot">
      <include>
        <uri>model://my_robot</uri>
      </include>
    </model>
  </world>
</sdf>

然后在终端中运行:

roslaunch gazebo_ros empty_world.launch world_name:=my_world.world

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/925464.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Ubuntu Server 22.04.5 从零到一:详尽安装部署指南

文章目录 Ubuntu Server 22.04.5 从零到一&#xff1a;详尽安装部署指南一、部署环境二、安装系统2.1 安装2.1.1 选择安装方式2.1.2 选择语言2.1.3 选择不更新2.1.4 选择键盘标准2.1.5 选择安装版本2.1.6 设置网卡2.1.7 配置代理2.1.8 设置镜像源2.1.9 选择装系统的硬盘2.1.10 …

定时/延时任务-ScheduledThreadPoolExecutor的使用

文章目录 1. 概要2. 固定速率和固定延时2.1 固定速率2.2 固定延时 3. API 解释3.1 schedule3.2 固定延时 - scheduleWithFixedDelay3.2 固定速率 - scheduleWithFixedDelay 4. 小结 1. 概要 前三篇文章的地址&#xff1a; 定时/延时任务-自己实现一个简单的定时器定时/延时任…

Linux操作系统学习---初识环境变量

目录 ​编辑 环境变量的概念&#xff1a; 小插曲&#xff1a;main函数的第一、二个参数 获取环境变量信息&#xff1a; 1.main函数的第三个参数 2.查看单个环境变量 3.c语言库函数getenv() 和环境变量相关的操作指令&#xff1a; 1.export---导出环境变量&#xff1a; 2.unse…

husky,commit规范,生成CHANGELOG.md,npm发版

项目git提交工程化&#xff08;钩子&#xff0c;提交信息commit message&#xff09;&#xff0c;npm修改版本&#xff0c;需要涉及到的包&#xff1a; husky&#xff0c;允许在git钩子中执行不同的脚步&#xff0c;如commitlint&#xff0c;eslint&#xff0c;prettier&#…

基于Python的飞机大战复现

✨✨ 欢迎大家来访Srlua的博文&#xff08;づ&#xffe3;3&#xffe3;&#xff09;づ╭❤&#xff5e;✨✨ &#x1f31f;&#x1f31f; 欢迎各位亲爱的读者&#xff0c;感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢&#xff0c;在这里我会分享我的知识和经验。&am…

【趣味】斗破苍穹修炼文字游戏HTML,CSS,JS

目录 图片展示 游戏功能 扩展功能 完整代码 实现一个简单的斗破苍穹修炼文字游戏&#xff0c;你可以使用HTML、CSS和JavaScript结合来构建游戏的界面和逻辑。以下是一个简化版的游戏框架示例&#xff0c;其中包含玩家修炼的过程、增加修炼进度和显示经验值的基本功能。 图片…

005 MATLAB符号微积分

前言&#xff1a; 在MATLAB中&#xff0c;数值与符号的主要区别在于它们的处理方式和应用场景 数值计算适用于实际的数值计算问题&#xff0c;如矩阵运算、数据分析等。符号计算适用于符号推导、公式化简和符号解析&#xff0c;如理论物理和工程计算。 01 符号对象 1.基本符…

Android 13 编译Android Studio版本的Launcher3

Android 13 Aosp源码 源码版本Android Studio版本Launcher3QuickStepLib (主要代码) Launcher3ResLib(主要资源)Launcher3IconLoaderLib(图

Ubuntu交叉编译 opencv for QNX

前言 在高通板子上开发一些程序的时候,会用到opencv帮助处理一下图像数据,高通车载板子sa8155和sm8295都有QNX os,需要交叉编译opencv的库,(这个交叉编译真是搞得我太恶心了,所以进行一个记录和分享) 搜了很多资料,有些太过于复杂,有些也存在错误导致最后没有编译成…

NVR监测软件EasyNVR多个NVR同时管理:录播主机的5条常见问题与解决办法

视频监控广泛应用于城市治安、交通管理、商业安保及家庭监控等领域。在使用EasyNVR平台管理多个NVR设备时&#xff0c;尤其是涉及到海康录播主机的场景中&#xff0c;使用者可能会遇到一些常见问题。本文将探讨海康录播主机的五个常见问题及其解决办法。 1、海康录播主机的5条常…

力扣刷题TOP101:6.BM7 链表中环的入口结点

目录&#xff1a; 目的 思路 复杂度 记忆秘诀 python代码 目的 {1,2},{3,4,5}, 3 是环入口。 思路 这个任务是找到带环链表的环入口。可以看作是上一题龟兔赛跑&#xff08;Floyd 判圈算法&#xff09;的延续版&#xff1a;乌龟愤愤不平地举报兔子跑得太快&#xff0c;偷偷…

网关: 用途和产品对比

概述 微服务中的有一个非常关键的组件: API网关 和配置中心一样&#xff0c;在没有采用微服务架构的时候 我们可以自己搭建自己的API网作作为统一的 API 出口和安全验证 在微服务架构之下&#xff0c;服务被拆的非常的零散&#xff0c;在降低了耦合度的同时 也给服务的统一…

Java ConcurrentHashMap

Java Map本质不是线程安全的&#xff0c;HashTable和Collections同步包装器&#xff08;Synchronized Wrapper&#xff09;在并发场景下性能低。Java还为实现 Map 的线程安全提供了并发包&#xff0c;保证线程安全的方式从synchronize简单方式到精细化&#xff0c;比如Concurre…

Spring 自调用事务失效分析及解决办法

前言 博主在写公司需求的时候&#xff0c;有一个操作涉及到多次对数据库数据的修改。当时就想着要加 Transactional注解来声名事务。并且由于一个方法中有太多行了&#xff0c;于是就想着修改数据库的操作单独提取出来抽象成一个方法。但这个时候&#xff0c;IDEA 提示我自调用…

【LeetCode每日一题】——189.轮转数组

文章目录 一【题目类别】二【题目难度】三【题目编号】四【题目描述】五【题目示例】六【题目提示】七【题目进阶】八【解题思路】九【时空频度】十【代码实现】十一【提交结果】 一【题目类别】 数组 二【题目难度】 中等 三【题目编号】 189.轮转数组 四【题目描述】 …

Spark基本命令详解

文章目录 Spark基本命令详解一、引言二、Spark Core 基本命令1、Transformations&#xff08;转换操作&#xff09;1.1、groupBy(func)1.2、filter(func) 2、Actions&#xff08;动作操作&#xff09;2.1、distinct([numTasks])2.2、sortBy(func, [ascending], [numTasks]) 三、…

AppFlow:支持飞书机器人调用百炼应用

AppFlow&#xff1a;支持飞书机器人调用百炼应用 简介&#xff1a; 本文介绍了如何创建并配置飞书应用及机器人&#xff0c;包括登录飞书开发者后台创建应用、添加应用能力和API权限&#xff0c;以及通过AppFlow连接流集成阿里云百炼服务&#xff0c;最后详细说明了如何将机器…

基于vite创建一个脚手架(快速入门)

Vite是一种新型的前端构建工具&#xff0c;主要用于构建现代化的Web应用程序。以 原生ESM 方式提供源码。这实际上是让浏览器接管了打包程序的部分工作&#xff1a;Vite 只需要在浏览器请求源码时进行转换并按需提供源码。根据情景动态导入代码&#xff0c;即只在当前屏幕上实际…

学习ASP.NET Core的身份认证(基于Session的身份认证1)

ASP.NET Core使用Session也可以实现身份认证&#xff0c;关于Session的介绍请见参考文献5。基于Session的身份认证大致原理就是用户验证成功后将用户信息保存到Session中&#xff0c;然后在其它控制器中从Session中获取用户信息&#xff0c;用户退出时清空Session数据。百度基于…

视觉语言模型(VLM)学习笔记

目录 应用场景举例 VLM 的总体架构包括&#xff1a; 深度解析&#xff1a;图像编码器的实现 图像编码器&#xff1a;视觉 Transformer 注意力机制 视觉-语言投影器 综合实现 训练及注意事项 总结 应用场景举例 基于文本的图像生成或编辑&#xff1a;你输入 “生成一张…