这篇博客涉及两个点,一个是 “OR Expansion 改写”,另一个是 “基于代价的改写”。
背景
在写SQL查询时,难以避免在过滤条件中使用 OR 谓词,但其往往会导致索引利用效率下降的问题 。本文将分享如何通过查询改写的2种方式进行优化。
使用 Or 谓词的示例如下:
CREATE TABLE `t1` (
`c1` varchar(255) NOT NULL,
`c2` varchar(255) NOT NULL,
PRIMARY KEY (`c1`),
UNIQUE KEY (`c2`));
explain select * from t1 where c1 = '1' or c2 = '3';
+------------------------------------------------------------------------------------+
| Query Plan |
+------------------------------------------------------------------------------------+
| =============================================== |
| |ID|OPERATOR |NAME|EST.ROWS|EST.TIME(us)| |
| ----------------------------------------------- |
| |0 |TABLE FULL SCAN|t1 |1 |3 | |
| =============================================== |
| Outputs & filters: |
| ------------------------------------- |
| 0 - output([t1.c1], [t1.c2]), filter([t1.c1 = '1' OR t1.c2 = '3']), rowset=16 |
| access([t1.c1], [t1.c2]), partitions(p0) |
| is_index_back=false, is_global_index=false, filter_before_indexback[false], |
| range_key([t1.c1]), range(MIN ; MAX)always true |
+------------------------------------------------------------------------------------+
11 rows in set (0.087 sec)
从上述计划中不难发现,当过滤条件为 where c1 = '1' or c2 = '3'
时,尽管 c1 列和 c2 列都分别建立了索引(或主键),但由于 OR 谓词的工作原理与 AND 谓词不同,导致在实际操作中无法通过索引来避免全表扫描的开销。
如果大家一时反应不过来为何无法利用索引,那这里就再多解释几句:因为在一个 table scan 最多只能选取一个索引进行使用,假如咱们选择使用建在 c1 上的主键索引,并完成了对 where c1 = '1'
的过滤,那么后面依然要在计算 where c2 = '3'
的时候进行一次全表扫描,如果选择使用建在 c2 上的索引也会出现类似的情况。所以无论怎么建索引,怎么用索引,这次全表扫总归是逃不掉的。
基础知识
OR 语句可以被改写成一条等价的带有 UNION ALL 的 SQL,例如上面的这条 SQL,就可以改写成:
explain
SELECT *
FROM t1
WHERE t1.c1 = 1
UNION ALL
SELECT *
FROM t1
WHERE t1.c2 = 3 and lnnvl(t1.c1 = 1);
其中的 lnnvl 函数,大家可以简单的理解成是一个类似于逻辑非的操作。这个改写一般被称为 OR Expansion(OR 展开),改写的好处就是,把不能利用索引的 OR 操作,改成了等价的且可以在 union all 两侧分别利用两个索引的操作。
优化思路
遇到这种希望利用 OR 两边的索引避免全表扫的场景时,OceanBase 支持通过 Hint /*+ use_concat */ 来强制优化器对原始 SQL 进行 OR Expansion 的改写。这样查询就会被拆分为两个部分,分别利用两个索引,在某些场景下可能可以提升查询性能。
explain select /*+ use_concat */ * from t1 where c1 = '1' or c2 = '3';
+-----------------------------------------------------------------------------------------------+
| Query Plan |
+-----------------------------------------------------------------------------------------------+
| ==================================================== |
| |ID|OPERATOR |NAME |EST.ROWS|EST.TIME(us)| |
| ---------------------------------------------------- |
| |0 |UNION ALL | |1 |7 | |
| |1 |├─TABLE GET |t1 |1 |5 | |
| |2 |└─TABLE RANGE SCAN|t1(c2)|0 |3 | |
| ==================================================== |
| Outputs & filters: |
| ------------------------------------- |
| 0 - output([UNION([1])], [UNION([2])]), filter(nil), rowset=16 |
| 1 - output([t1.c1], [t1.c2]), filter(nil), rowset=16 |
| access([t1.c1], [t1.c2]), partitions(p0) |
| is_index_back=false, is_global_index=false, |
| range_key([t1.c1]), range[1 ; 1], |
| range_cond([t1.c1 = '1']) |
| 2 - output([t1.c1], [t1.c2]), filter([lnnvl(cast(t1.c1 = '1', TINYINT(-1, 0)))]), rowset=16 |
| access([t1.c1], [t1.c2]), partitions(p0) |
| is_index_back=false, is_global_index=false, filter_before_indexback[false], |
| range_key([t1.c2], [t1.shadow_pk_0]), range(3,MIN ; 3,MAX), |
| range_cond([t1.c2 = '3']) |
+-----------------------------------------------------------------------------------------------+
20 rows in set (0.008 sec)
在上面的计划中,可以看到,使用 hint 进行改写后,union all 左边是 table get,说明走了主键,右边是 table range scan,走了 c2 列上的索引。
What's more ?
上面在介绍优化思路时,提到了一句 “在某些场景下可能可以提升查询性能”,原因是优化器的改写算法分为两类:
- 第一类叫基于规则的改写,这类改写总会有正面的效果,例如消除恒真、恒假条件。
- 第二类叫基于代价的改写,特点是某些场景下改写后能生成更好的执行计划,另一些场景下则不能。是否可以触发这类改写,优化器会根据实际的数据分布、是否有合适的索引等因素来进行判断。基于代价的算法在完成改写后需要 “询问” 优化器:“改写后的 SQL 是否能够生成执行代价更小的计划?”,如果代价的确降低了,这次改写才会被触发。
咱们上面提到的 OR Expansion,就属于第二类 “基于代价的改写”,因为 SQL 被一分为二了,所以只有当 union all 两边都有索引,并且索引的过滤性不错的情况下,才能够达到优化的目的。
Q1:
SELECT * FROM T1 WHERE C1 < 20000 OR C2 < 30 ;
=>
Q2:
SELECT /*SEL_1*/ * FROM T1 WHERE C1 < 20000 UNION ALL
SELECT /*SEL_2*/ * FROM T1 WHERE C2 < 30 AND LNNVL (C1 < 20000);
针对上面这个 OR Expansion 的例子,简单解释下为什么有些改写需要基于代价才能触发:
- 当 T1 表上在 C1 列和 C2 列上都有索引时:Q1 无法利用这两个索引,它只能走主表扫描。
- Q2 中的
SEL_1
可以利用 C1 上的索引,SEL_2
可以利用 C2 上的索引。如果这两个过滤条件有强的过滤性,那么索引扫描可以大大减少读取数据的开销。此时,触发 OR Expansion 改写有利于生成更好的执行计划。 - 当 T1 表上没有任何索引时:Q1 和 Q2 都需要进行全表扫描。但是 Q2 被分拆为两个 SELECT 子句,它需要进行两次全表扫描。因此,改写后的执行代价会上升。在这种情况下,不应该触发 OR Expansion。
综上所述:在没有及时收集统计信息时(即优化器不能准备计算代价时),可以根据实际情况(两边是否都有索引,以及索引过滤性),通过 Hint /*+ use_concat */ 进行 OR Expansion 改写,达到充分利用索引的目的。当然,也可以根据实际情况,通过 Hint /* +no_expand */ 来禁用 OR Expansion 改写。