AIGC--AIGC与人机协作:新的创作模式

AIGC与人机协作:新的创作模式

在这里插入图片描述

引言

人工智能生成内容(AIGC)正在以惊人的速度渗透到创作的各个领域。从生成文本、音乐、到图像和视频,AIGC使得创作过程变得更加快捷和高效。然而,AIGC并非完全取代了人类的创作角色,更多的是与人类协作形成一种新的创作模式。在这篇博客中,我们将探讨AIGC与人类如何在创作中紧密协作,并通过代码示例展示如何将这种协作应用到实际的创作场景中。

AIGC与人机协作的意义

在传统的创作模式中,创作者需要从无到有地构思、创作和调整作品,整个过程费时费力。而AIGC通过利用机器学习模型帮助人类在特定的创作阶段提供灵感、辅助内容生成或者自动化地进行某些重复性任务,从而降低了创作的门槛,提高了效率。人类和AIGC之间的协作,可以最大化地融合机器的运算能力和人类的创造性思维。

应用场景

  1. 文本创作:通过AIGC模型生成草稿,人类创作者进行润色和编辑。
  2. 音乐创作:AI生成背景旋律,人类进行演奏或编曲。
  3. 图像创作:AI生成图像,人类艺术家进行后期调整和风格化处理。
  4. 视频创作:AI生成短视频剪辑,人类创作者对视频进行编辑,增强故事性。

AIGC与人机协作的核心技术

在这里插入图片描述

AIGC与人机协作的核心技术包括生成对抗网络(GAN)、自然语言处理(NLP)、Transformer、强化学习等,这些技术使得AI在理解和生成内容方面取得了巨大的突破。下面我们将通过代码示例展示如何利用这些技术实现人机协作的具体应用。

1. 使用Transformer进行文本协作创作

Transformer架构的出现极大地提升了自然语言处理的效果,尤其是在文本生成和理解方面。以下是一个基于GPT-2模型与人类协作进行文本创作的示例,利用GPT-2生成文本内容,创作者可以进一步进行修改和扩展。

from transformers import GPT2LMHeadModel, GPT2Tokenizer
import torch

# 加载GPT-2模型和分词器
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")

# 输入起始文本,作为AI生成的基础
prompt = "In a world where artificial intelligence collaborates with humans,"
input_ids = tokenizer.encode(prompt, return_tensors='pt')

# 使用GPT-2生成后续文本
output = model.generate(input_ids, max_length=200, num_return_sequences=1, temperature=0.7)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)

print("Generated Text:\n", generated_text)

# 人类创作者可以在此基础上进行润色和扩展

通过这个代码,我们可以让GPT-2为创作者提供灵感或者初步的草稿。人类创作者则可以基于生成的文本进一步加工润色,从而创作出更具风格和深度的内容。

2. 使用VQ-VAE-2生成图像并进行艺术加工

VQ-VAE-2是一种先进的自编码器模型,可以生成高分辨率的图像。在图像创作中,AI可以帮助生成初步的画面,人类艺术家则可以对这些画面进行进一步的艺术加工,使其符合个人的艺术风格。

以下是一个使用VQ-VAE-2生成图像的示例:

import torch
from torchvision.utils import save_image
from vqvae import VQVAE  # 假设已实现VQVAE模型

# 加载预训练的VQ-VAE模型
model = VQVAE()
model.load_state_dict(torch.load("vqvae_pretrained.pth"))
model.eval()

# 生成潜在向量并解码为图像
z = torch.randn(1, 256, 8, 8)  # 随机生成潜在向量
with torch.no_grad():
    generated_image = model.decode(z)

# 保存生成的图像
save_image(generated_image, 'generated_image.png')
print("Image saved as 'generated_image.png'")

# 人类艺术家可以基于这个图像进一步进行艺术化处理,如调整颜色、添加细节等

在这个例子中,AI生成了一个初步的图像,艺术家可以基于这个基础进行后续创作,进一步提高作品的表现力。

3. 使用MuseGAN进行音乐协作创作

MuseGAN是一种用于音乐生成的GAN模型,可以生成多轨音乐,适合人类和AI的协作。AI生成背景旋律和伴奏,人类音乐家则可以在这个基础上进行演奏或编曲。

以下是一个使用MuseGAN生成音乐片段的代码示例:

import numpy as np
import musegan

# 初始化MuseGAN模型
model = musegan.MuseGAN()
model.load_weights('musegan_weights.h5')

# 随机生成噪声向量
noise = np.random.normal(0, 1, (1, 100))

# 生成音乐片段
music = model.generate(noise)

# 保存生成的音乐为MIDI文件
musegan.save_midi(music, 'generated_music.mid')
print("Music saved as 'generated_music.mid'")

# 人类音乐家可以使用MIDI编辑工具对音乐进行进一步编曲和优化

在这个例子中,MuseGAN为创作者生成了一段音乐片段,音乐家可以基于这个片段进行创作,从而大大提高音乐创作的效率。

人机协作的优势与挑战

优势

  1. 提高创作效率:AIGC可以为创作者提供初步的创作内容,从而节省大量的时间和精力。
  2. 打破创意瓶颈:在创作遇到瓶颈时,AIGC可以提供灵感和新的视角,帮助创作者找到突破口。
  3. 降低创作门槛:对于没有专业技能的爱好者,AIGC提供了强有力的工具,降低了创作的技术门槛。

挑战

  1. 内容质量控制:AIGC生成的内容质量不一,可能需要人类创作者进行大量的后期编辑。
  2. 缺乏个性化:AIGC生成的内容往往缺乏独特的风格,需要人类创作者赋予其个性化特征。
  3. 道德与版权问题:AIGC生成的内容可能涉及版权争议,特别是在使用已有作品进行训练的情况下。

AIGC与人机协作的未来展望

  1. 深度融合:未来的AIGC工具将与人类的创作过程深度融合,实现真正的无缝协作。例如,通过语音指令引导AI生成指定风格的内容。
  2. 个性化创作:AI将能够更好地理解个人创作者的偏好和风格,生成符合个人需求的内容,减少后期编辑的工作量。
  3. 实时交互创作:在音乐、绘画和写作等领域,AI可以实现与人类的实时互动,提供即时反馈,从而让创作过程更加顺畅和富有乐趣。

结论

AIGC与人机协作正在重新定义创作的方式。通过利用AI的计算能力和生成能力,人类创作者可以将更多的时间和精力放在作品的构思和艺术表现上,而将重复性和耗时的工作交给AI处理。这种协作模式不仅提高了创作效率,还为创作者带来了新的灵感和创作机会。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/923507.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构实战篇】用C语言实现你的私有队列

🏝️专栏:【数据结构实战篇】 🌅主页:f狐o狸x 在前面的文章中我们用C语言实现了栈的数据结构,本期内容我们将实现队列的数据结构 一、队列的概念 队列:只允许在一端进行插入数据操作,在另一端…

RHCSA作业

课后练习 将整个 /etc 目录下的文件全部打包并用 gzip 压缩成/back/etcback.tar.gz [rootlocalhost ~]# tar -czvf /back/etcback.tar.gz -C / etc 使当前用户永久生效的命令别名:写一个命令命为hello,实现的功能为每输入一次hello命令,就有hello&#…

java:拆箱和装箱,缓存池概念简单介绍

1.基本数据类型及其包装类: 举例子: Integer i 10; //装箱int n i; //拆箱 概念: 装箱就是自动将基本数据类型转换为包装器类型; 拆箱就是自动将包装器类型转换为基本数据类型; public class Main {public s…

如何选择最适合企业的ETL解决方案?

在今天的大数据时代,企业的数据管理和处理变得愈发重要。企业也越来越依赖于数据仓库和数据湖来提取、转换和加载(ETL)关键业务信息。一个高效、灵活的ETL解决方案不仅能提升数据处理能力,还能为企业决策提供有力支持。然而&#…

[网鼎杯 2020 朱雀组]phpweb 详细题解(反序列化绕过命令执行)

知识点: call_user_func() 函数 反序列化魔术方法 find命令查找flag 代码审计 打开题目,弹出上面的提示,是一个警告warning,而且页面每隔几秒就会刷新一次,根据warning中的信息以及信息中的时间一直在变,可以猜测是date()函数一直在被调用 查看源代码发现一些信息,但是作用…

数字图像处理(2):Verilog基础语法

(1)Verilog常见数据类型: reg型、wire型、integer型、parameter型 (2)Verilog 常见进制:二进制(b或B)、十进制(d或D)、八进制(o或O)、…

c++:面向对象三大特性--继承

面向对象三大特性--继承 一、继承的概念及定义(一)概念(二)继承格式1、继承方式2、格式写法3、派生类继承后访问方式的变化 (三)普通类继承(四)类模板继承 二、基类和派生类的转换&a…

数据结构 (12)串的存储实现

一、顺序存储结构 顺序存储结构是用一组连续的存储单元来存储串中的字符序列。这种存储方式类似于线性表的顺序存储结构,但串的存储对象仅限于字符。顺序存储结构又可以分为定长顺序存储和堆分配存储两种方式。 定长顺序存储: 使用静态数组存储&#xff…

在线绘制Nature Communication同款双色、四色火山图,突出感兴趣的基因

导读:火山图通常使用三种颜色分别表示显著上调,显著下调和不显著。通过为特定的数据点添加另一种颜色,可以创建双色或四色火山图,从而更直观地突出感兴趣的数据点。 《Nature Communication》文章“Molecular and functional land…

2024赣ctf-web -wp

1.你到底多想要flag??? 首先来解决第一关: 先了解一下stripos(); 并且此函数处理数组返回false。而且pre_match同样遇见数组是返回false(解释一下正则 i:这是正则表达式的修饰符,代表“不区…

计算机毕业设计Python+大模型美食推荐系统 美食可视化 美食数据分析大屏 美食爬虫 美团爬虫 机器学习 大数据毕业设计 Django Vue.js

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…

Linux 查看内核日志的方法

文章目录 1. dmesg 命令一. 介绍内核环形缓冲区的特点 二. 主要功能三. dmesg 使用 2. 查看kmsg文件/dev/kmsg 的用途使用 /dev/kmsg与 dmesg 的关系 3. 内核日志消息的打印行为 1. dmesg 命令 一. 介绍 dmesg(display message 或 display driver message 的缩写&…

Perforce SAST专家详解:自动驾驶汽车的安全与技术挑战,Klocwork、Helix QAC等静态代码分析成必备合规性工具

自动驾驶汽车安全吗?现代汽车的软件包含1亿多行代码,支持许多不同的功能,如巡航控制、速度辅助和泊车摄像头。而且,这些嵌入式系统中的代码只会越来越复杂。 随着未来汽车的互联程度越来越高,这一趋势还将继续。汽车越…

从Full-Text Search全文检索到RAG检索增强

从Full-Text Search全文检索到RAG检索增强 时光飞逝,转眼间六年过去了,六年前铁蛋优化单表千万级数据查询性能的场景依然历历在目,铁蛋也从最开始做CRUD转行去了大数据平台开发,混迹包装开源的业务,机缘巧合下做了实时…

LLM PPT Translator

LLM PPT Translator 引言Github 地址UI PreviewTranslated Result Samples 引言 周末开发了1个PowerPoint文档翻译工具,上传PowerPoint文档,指定想翻译的目标语言,通过LLM的能力将文档翻译成目标语言的文档。 Github 地址 https://github.…

【踩坑】git中文乱码问题

转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~ 背景说明 使用git diff显示中文乱码,如: 修复方法 执行一次: export LESSCHARSETutf-8 如果需要下次登录免输入…

安装Docker报错TCP connection reset by peer或者Timeout

原因:访问的外网下载导致超时或者断连接报错 修改为国内阿里下载地址 yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo

Linux宝塔部署wordpress网站更换服务器IP后无法访问管理后台和打开网站页面显示错乱

一、背景: wordpress网站搬家,更换服务器IP后,如果没有域名时,使用服务器IP地址无法访问管理后台和打开网站页面显示错乱。 二、解决方法如下: 1.wordpress搬家后,在新服务器上,新建站点时&am…

Rust Newtype模式(通过结构体封装现有类型来创建新的类型)(单字段结构体,通过.0访问)模式匹配、解构、DerefMut

文章目录 深入理解Rust中的Newtype模式什么是Newtype模式?Newtype模式的基本形式Newtype的访问访问 Newtype 的值1. 通过 .0 访问字段2. 通过方法访问3. 通过模式匹配(解构)访问 总结 Newtype模式的应用场景1. 类型安全2. 增强可读性3. 定制化…

【ArcGIS Pro】实现一下完美的坐标点标注

在CAD里利用湘源可以很快点出一个完美的坐标点标注。 但是在ArcGIS Pro中要实现这个效果却并不容易。 虽然有点标题党,这里就尽量在ArcGIS Pro中实现一下。 01 标注实现方法 首先是准备工作,准备一个点要素图层,包含xy坐标字段。 在地图框…