文章目录
- 引言
- 1. 文本分类-使用场景
- 2. 自定义类别任务
- 3. 贝叶斯算法
- 3.1 预备知识
- 3.2 贝叶斯公式
- 3.3 贝叶斯公式的应用
- 3.4 贝叶斯公式在NLP中的应用
- 3.5 贝叶斯公式-文本分类
- 3.6 代码实现
- 3.7 贝叶斯算法的优缺点
- 4. 支持向量机
- 4.1 支持向量机-核函数
- 4.2 支持向量机-解决多分类
- 4.3 代码
- 4.4 支持向量机的优缺点
- 5. 深度学习
- 5.1 深度学习-pipeline
- 5.2 文本分类-fastText
- 5.3 文本分类-TextRNN
- 5.4 文本分类-RNN
- 5.5 文本分类-LSTM
- 5.5.1 解析
- 5.5.2 代码
- 5.6 文本分类-CNN
- 5.6.1 文本分类-TextCNN
- 5.6.2 文本分类-Gated CNN
- 5.6.3 代码
- 5.7 文本分类-TextRCNN
- 5.8 文本分类-Bert
- 5.9 代码演示
- 5.9.1 config.py
- 5.9.2 model.py
- 5.9.3 main.py
- 5.9.4 loader.py
- 5.9.5 evaluate.py
- 6. 数据稀疏问题
- 7. 标签不均衡问题
- 8. 多标签分类问题
- 9. BCELoss
引言
文本分类任务是自然语言处理(NLP)中的一个常见问题,目的是根据预定义的类别来自动对输入的文本进行分类。这类任务广泛应用于垃圾邮件过滤、情感分析、主题标签生成等场景。常用的方法包括朴素贝叶斯分类、支持向量机(SVM)、神经网络等。
- 预先设定好一个文本类别集合,对于一篇文本,预测其所属的类别
- 例如:
- 情感分析:
- 这家饭店太难吃了 -> 正类
- 这家菜很好吃 -> 负类
- 领域分类:
- 今日A股行情大好 -> 经济
- 今日湖人击败勇士 -> 体育
1. 文本分类-使用场景
- 违规检测
- 涉黄、涉暴、涉恐、辱骂等
- 主要应用在客服、销售对话质检,或网站内容审查等
2. 自定义类别任务
- 类别的定义方式是任意的
- 只要人能够基于文本能够判断,都可以作为分类类别
- 如:
- 垃圾邮件分类
- 对话、文章是否与汽车交易相关
- 文章风格是否与某作者风格一致
- 文章是否是机器生成
- 合同文本是否符合规范
- 文章适合阅读人群(未成年、中年、老年、孕妇等)
3. 贝叶斯算法
3.1 预备知识
全概率公式:
举例:扔一个正常的骰子
P(B1) = 结果为奇数
P(B2) = 结果为偶数
P(A) = 结果为5
P(A) = P(B1) * P(A|B1) + P(B2) * P(A|B2)
3.2 贝叶斯公式
公式:
3.3 贝叶斯公式的应用
求解:如果核酸检测呈阳性,感染新冠的概率是多少?
我们假定新冠在人群中的感染率为0.1%(千分之一)
核酸检测有一定误报率,我们假定如下:
- P(A) = 感染新冠的概率
- P(B) = 核酸检测呈阳性的概率
- P(A|B) = 核酸检测呈阳性,确实感染新冠的概率
- P(B|A) = 感染了新冠,且检测结果呈阳性
- P(B|A) = 未感染新冠,且检测结果呈阳性
3.4 贝叶斯公式在NLP中的应用
- 用贝叶斯公式处理文本分类任务
- 一个合理假设:
- 文本属于哪个类别,与文本中包含哪些词相关
- 任务:
- 知道文本中有哪些词,预测文本属于某类别的概率
3.5 贝叶斯公式-文本分类
- 假定有3个类别A1, A2, A3
- 一个文本S有n个词组成,W1, W2, W3…Wn
- 想要计算文本S属于A1类别的概率P(A1|S) = P(A1|W1, W2, W3…Wn)
- 贝叶斯公式
- P(A1|S) = P(W1, W2…Wn|A1) * P(A1) / P(W1,W2…Wn)
- P(A2|S) = P(W1, W2…Wn|A2) * P(A2) / P(W1,W2…Wn)
- P(A3|S) = P(W1, W2…Wn|A3) * P(A3) / P(W1,W2…Wn)
- 词的独立性假设
- P(W1, W2…Wn|A3) = P(W1|A3) * P(W2|A3)…P(Wn|A3)
3.6 代码实现
import math
import jieba
import re
import os
import json
from collections import defaultdict
jieba.initialize()
"""
贝叶斯分类实践
P(A|B) = (P(A) * P(B|A)) / P(B)
事件A:文本属于类别x1。文本属于类别x的概率,记做P(x1)
事件B:文本为s (s=w1w2w3..wn)
P(x1|s) = 文本为s,属于x1类的概率. #求解目标#
P(x1|s) = P(x1|w1, w2, w3...wn) = P(w1, w2..wn|x1) * P(x1) / P(w1, w2, w3...wn)
P(x1) 任意样本属于x1的概率。x1样本数/总样本数
P(w1, w2..wn|x1) = P(w1|x1) * P(w2|x1)...P(wn|x1) 词的独立性假设
P(w1|x1) x1类样本中,w1出现的频率
公共分母的计算,使用全概率公式:
P(w1, w2, w3...wn) = P(w1,w2..Wn|x1)*P(x1) + P(w1,w2..Wn|x2)*P(x2) ... P(w1,w2..Wn|xn)*P(xn)
"""
class BayesApproach:
def __init__(self, data_path):
self.p_class = defaultdict(int)
self.word_class_prob = defaultdict(dict)
self.load(data_path)
def load(self, path):
self.class_name_to_word_freq = defaultdict(dict)
self.all_words = set() #汇总一个词表
with open(path, encoding="utf8") as f:
for line in f:
line = json.loads(line)
class_name = line["tag"]
title = line["title"]
words = jieba.lcut(title)
self.all_words.union(set(words))
self.p_class[class_name] += 1 #记录每个类别样本数量
word_freq = self.class_name_to_word_freq[class_name]
#记录每个类别下的词频
for word in words:
if word not in word_freq:
word_freq[word] = 1
else:
word_freq[word] += 1
self.freq_to_prob()
return
#将记录的词频和样本频率都转化为概率
def freq_to_prob(self):
#样本概率计算
total_sample_count = sum(self.p_class.values())
self.p_class = dict([c, self.p_class[c] / total_sample_count] for c in self.p_class)
#词概率计算
self.word_class_prob = defaultdict(dict)
for class_name, word_freq in self.class_name_to_word_freq.items():
total_word_count = sum(count for count in word_freq.values()) #每个类别总词数
for word in word_freq:
#加1平滑,避免出现概率为0,计算P(wn|x1)
prob = (word_freq[word] + 1) / (total_word_count + len(self.all_words))
self.word_class_prob[class_name][word] = prob
self.word_class_prob[class_name]["<unk>"] = 1/(total_word_count + len(self.all_words))
return
#P(w1|x1) * P(w2|x1)...P(wn|x1)
def get_words_class_prob(self, words, class_name):
result = 1
for word in words:
unk_prob = self.word_class_prob[class_name]["<unk>"]
result *= self.word_class_prob[class_name].get(word, unk_prob)
return result
#计算P(w1, w2..wn|x1) * P(x1)
def get_class_prob(self, words, class_name):
#P(x1)
p_x = self.p_class[class_name]
# P(w1, w2..wn|x1) = P(w1|x1) * P(w2|x1)...P(wn|x1)
p_w_x = self.get_words_class_prob(words, class_name)
return p_x * p_w_x
#做文本分类
def classify(self, sentence):
words = jieba.lcut(sentence) #切词
results = []
for class_name in self.p_class:
prob = self.get_class_prob(words, class_name) #计算class_name类概率
results.append([class_name, prob])
results = sorted(results, key=lambda x:x[1], reverse=True) #排序
#计算公共分母:P(w1, w2, w3...wn) = P(w1,w2..Wn|x1)*P(x1) + P(w1,w2..Wn|x2)*P(x2) ... P(w1,w2..Wn|xn)*P(xn)
#不做这一步也可以,对顺序没影响,只不过得到的不是0-1之间的概率值
pw = sum([x[1] for x in results]) #P(w1, w2, w3...wn)
results = [[c, prob/pw] for c, prob in results]
#打印结果
for class_name, prob in results:
print("属于类别[%s]的概率为%f" % (class_name, prob))
return results
if __name__ == "__main__":
path = "../data/train_tag_news.json"
ba = BayesApproach(path)
query = "目瞪口呆 世界上还有这些奇葩建筑"
ba.classify(query)
3.7 贝叶斯算法的优缺点
缺点:
- 如果样本不均衡会极大影响先验概率
- 对于未见过的特征或样本,条件概率为零,失去预测的意义(可以引入平滑)
- 特征独立假设只是个假设
- 没有考虑语序,也没有词义
优点:
5. 简单高效
6. 一定的可解释性
7. 如果样本覆盖的好,效果是不错的
8. 训练数据可以很好的分批处理
4. 支持向量机
支持向量机(SVM)是一种用于分类和回归问题的监督学习算法。在分类任务中,SVM通过找到一个超平面来区分不同类别的数据点。这个超平面被选取以便最大化距离最近的数据点(支持向量)的间隔,从而提供更好的泛化能力。SVM在文本分类、图像识别和生物信息学等多个领域有广泛应用。它也可以通过核技巧来处理非线性问题。
- SVM:support vector machine
- 属于有监督学习 supervised learning
- 通过数据样本,学习最大边距超平面
- 1964年提出
- 尝试区分蓝色球和红色三角
支持向量机
- 线性不可分问题
- 将空间映射到更高维度来分类非线性数据
4.1 支持向量机-核函数
- 为了解决线性不可分问题,我们需要把输入映射到高维,即寻找函数f(x) ,使其输出维度高于x
- 例如: x = [X1, X2, X3]
- 令f(x) = [X1X1, X1X2, X1X3, X2X1, X2X2, X2X3, X3X1, X3X2, X3*X3] (对自己做笛卡尔积)
- 这样x就从3维上升到9维
- 向高维映射如何解决线性不可分问题?
- 考虑一组一维数据
- [-1, 0, 1] 为正样本,[-3, -2, 2, 3]为负样本
- 将x映射为[x, x2]后
- 可以用直线划分
- 但是这样出现一个问题,维度过高的向量计算在进行内积运算非常耗时,而svm的求解中内积运算很频繁
- 所以我们希望内有一种方法快速计算f(x1)f(x2)
- 所谓的核函数即为满足条件:
- K(x1, x2) = f(x1)f(x2) 的函数统称
- 线性核函数
- 多项式核函数
- 高斯核函数
- 双曲正切核函数
4.2 支持向量机-解决多分类
- 假设要解决一个K分类问题,即有K个目标类别
-
- one vs one方式
- 建立 K(K - 1)/2 个svm分类器,每个分类器负责K个类别中的两个类别,判断输入样本属于哪个类别
- 对于一个待预测的样本,使用所有分类器进行分类,最后保留被预测词数最多的类别
- 假设类别有[A,B,C] X->SVM(A,B)->A
- X->SVM(A,C)->A
- X->SVM(B,C)->B
- 最终判断 X->A
-
- one vs rest方式
- 建立K个svm分类器,每个分类器负责划分输入样本属于K个类别中的某一个类别,还是其他类别
- 最后保留预测分值最高的类别
- 假设类别有[A,B,C] X->SVM(A,rest)->0.1
- X->SVM(B,rest)->0.2
- X->SVM(C,rest)->0.5
- 最终判断 X->C
4.3 代码
#!/usr/bin/env python3
#coding: utf-8
#使用基于词向量的分类器
#对比几种模型的效果
import json
import jieba
import numpy as np
from gensim.models import Word2Vec
from sklearn.metrics import classification_report
from sklearn.svm import SVC
from collections import defaultdict
LABELS = {'健康': 0, '军事': 1, '房产': 2, '社会': 3, '国际': 4, '旅游': 5, '彩票': 6, '时尚': 7, '文化': 8, '汽车': 9, '体育': 10, '家居': 11, '教育': 12, '娱乐': 13, '科技': 14, '股票': 15, '游戏': 16, '财经': 17}
#输入模型文件路径
#加载训练好的模型
def load_word2vec_model(path):
model = Word2Vec.load(path)
return model
#加载数据集
def load_sentence(path, model):
sentences = []
labels = []
with open(path, encoding="utf8") as f:
for line in f:
line = json.loads(line)
title, content = line["title"], line["content"]
sentences.append(" ".join(jieba.lcut(title)))
labels.append(line["tag"])
train_x = sentences_to_vectors(sentences, model)
train_y = label_to_label_index(labels)
return train_x, train_y
#tag标签转化为类别标号
def label_to_label_index(labels):
return [LABELS[y] for y in labels]
#文本向量化,使用了基于这些文本训练的词向量
def sentences_to_vectors(sentences, model):
vectors = []
for sentence in sentences:
words = sentence.split()
vector = np.zeros(model.vector_size)
for word in words:
try:
vector += model.wv[word]
# vector = np.max([vector, model.wv[word]], axis=0)
except KeyError:
vector += np.zeros(model.vector_size)
vectors.append(vector / len(words))
return np.array(vectors)
def main():
model = load_word2vec_model("model.w2v")
train_x, train_y = load_sentence("../data/train_tag_news.json", model)
test_x, test_y = load_sentence("../data/valid_tag_news.json", model)
classifier = SVC()
classifier.fit(train_x, train_y)
y_pred = classifier.predict(test_x)
print(classification_report(test_y, y_pred))
if __name__ == "__main__":
main()
4.4 支持向量机的优缺点
优点:
- 少数支持向量决定了最终结果,对异常值不敏感
- 对于样本数量需求较低
- 可以处理高维度数据
缺点:
- 样本数量过多的时候,计算负担很大
- 多分类任务处理起来比较麻烦
- 核函数的选取以及参数的选取较为困难
5. 深度学习
5.1 深度学习-pipeline
在深度学习中,“pipeline” 通常指的是一系列数据预处理、模型训练、模型评估和模型部署的步骤。这些步骤被组织成一个流程,以便更高效地完成特定任务。
- 数据收集:获取用于训练和测试的数据。
- 数据预处理:进行归一化、数据增强、分词等操作。
- 模型设计:选择或设计适合任务的神经网络架构。
- 模型训练:使用训练数据集进行模型训练。
- 验证与调优:使用验证数据集进行模型性能评估和超参数调整。
- 模型评估:使用测试数据集进行最终模型评估。
- 模型部署:将训练好的模型部署到实际环境中。
5.2 文本分类-fastText
FastText 是一个用于文本分类和词向量学习的开源库。与传统的深度学习模型相比,FastText 显著提高了训练速度和分类准确性。
- 原理:FastText 通过使用层次 softmax 和 n-gram 特性,将文本数据快速映射到高维空间,进而进行分类。
- 训练:FastText 可以快速训练出文本分类器。它不仅支持多类别分类,还支持多标签分类。
- 部署:由于模型相对较小,FastText 非常适合用于移动设备或者有资源限制的环境。
- 用途:FastText 通常用于情感分析、主题分类、垃圾邮件过滤等文本分类任务。
- 优点:FastText 不仅训练速度快,而且准确性也相当高,特别是对于小型数据集。
- ngram-features
- -> [<ap, app, ppl, ple, le>]
- x -> Embedding -> Mean Pooling -> Label
5.3 文本分类-TextRNN
TextRNN 是一种利用循环神经网络(RNN)进行文本分类的模型。下面是一些关键点:
- 结构:TextRNN 通常由词嵌入层、一个或多个 RNN 层(如 LSTM 或 GRU)和一个全连接层组成。
- 顺序信息:RNN 能够捕获文本中的顺序信息,这对于理解语境和句子结构非常重要。
- 训练:与传统的文本分类方法相比,TextRNN 需要更长的训练时间和更多的计算资源。
- 功能:可以应用于多种文本分类任务,如情感分析、主题识别和命名实体识别等。
- 灵活性:模型可以通过添加更多的 RNN 层或使用双向 RNN 来增加复杂性和性能。
TextRNN 是一种强大但计算密集的文本分类方法,尤其适用于需要捕获长距离依赖或复杂结构的任务。
- 使用RNN(LSTM、GRU)对文本进行编码,使用最后一个位置的输出向量进行分类
- x
- –>embedding
- –>BiLSTM
- –>Dropout
- ->LSTM
- ->Linear
- –>softmax
- –>y
5.4 文本分类-RNN
RNN(循环神经网络)用于文本分类主要有以下几个特点:
- 序列建模:RNN 能够捕获文本序列中的依赖关系,这对于文本分类非常有用。
- 结构:基础的 RNN 模型通常包括一个词嵌入层,一个 RNN 层,以及一个或多个全连接层。
- 可变长度:RNN 能够处理不同长度的输入序列,这对于文本数据来说是一个优势。
- 梯度消失/爆炸:基础的 RNN 结构容易出现梯度消失或梯度爆炸问题,这可以通过使用 LSTM 或 GRU 等变体来解决。
- 应用场景:RNN 在处理具有序列依赖性的文本分类问题(如情感分析或主题分类)方面表现得相当出色。
- 计算复杂性:与传统机器学习算法相比,RNN 需要更多的计算资源和时间进行训练。
总体来说,RNN 是一种适用于文本分类的强大模型,特别是当文本中的顺序信息很重要时。然而,也需要注意其潜在的计算成本和其他技术挑战。
- Recurrent Neural Network
- 循环神经网络
- 隐向量按时间步向后传递,起到记忆的作用
5.5 文本分类-LSTM
5.5.1 解析
LSTM(长短时记忆网络)在文本分类方面具有以下特点:
- 序列模型:和RNN一样,LSTM能够处理序列数据,适合于需要考虑上下文信息的文本分类任务。
- 解决梯度问题:LSTM设计用来解决基础RNN模型中的梯度消失和梯度爆炸问题。
- 存储单元:LSTM通过一个特殊的存储单元来保存历史信息,从而更好地捕获长距离依赖。
- 复杂性:虽然LSTM模型在捕获长距离依赖方面表现得更好,但相对于基础的RNN,它们更复杂并且需要更多的计算资源。
- 多变体:LSTM有多种变体,如双向LSTM和堆叠LSTM,这些变体可以进一步提高模型性能。
- 常见应用:LSTM非常适用于情感分析、主题分类等需要考虑上下文和长距离依赖的文本分类任务。
总体而言,LSTM提供了一种高度灵活和强大的方式来进行文本分类,尤其是当处理具有复杂结构和长距离依赖的文本时。
- 将RNN的隐单元复杂化
- 一定程度规避了梯度消失和信息遗忘的问题
5.5.2 代码
import torch
import torch.nn as nn
import numpy as np
'''
用矩阵运算的方式复现一些基础的模型结构
清楚模型的计算细节,有助于加深对于模型的理解,以及模型转换等工作
'''
#构造一个输入
length = 6
input_dim = 12
hidden_size = 7
x = np.random.random((length, input_dim))
# print(x)
#使用pytorch的lstm层
torch_lstm = nn.LSTM(input_dim, hidden_size, batch_first=True)
for key, weight in torch_lstm.state_dict().items():
print(key, weight.shape)
def sigmoid(x):
return 1/(1 + np.exp(-x))
#将pytorch的lstm网络权重拿出来,用numpy通过矩阵运算实现lstm的计算
def numpy_lstm(x, state_dict):
weight_ih = state_dict["weight_ih_l0"].numpy()
weight_hh = state_dict["weight_hh_l0"].numpy()
bias_ih = state_dict["bias_ih_l0"].numpy()
bias_hh = state_dict["bias_hh_l0"].numpy()
#pytorch将四个门的权重拼接存储,我们将它拆开
w_i_x, w_f_x, w_c_x, w_o_x = weight_ih[0:hidden_size, :], \
weight_ih[hidden_size:hidden_size*2, :],\
weight_ih[hidden_size*2:hidden_size*3, :],\
weight_ih[hidden_size*3:hidden_size*4, :]
w_i_h, w_f_h, w_c_h, w_o_h = weight_hh[0:hidden_size, :], \
weight_hh[hidden_size:hidden_size * 2, :], \
weight_hh[hidden_size * 2:hidden_size * 3, :], \
weight_hh[hidden_size * 3:hidden_size * 4, :]
b_i_x, b_f_x, b_c_x, b_o_x = bias_ih[0:hidden_size], \
bias_ih[hidden_size:hidden_size * 2], \
bias_ih[hidden_size * 2:hidden_size * 3], \
bias_ih[hidden_size * 3:hidden_size * 4]
b_i_h, b_f_h, b_c_h, b_o_h = bias_hh[0:hidden_size], \
bias_hh[hidden_size:hidden_size * 2], \
bias_hh[hidden_size * 2:hidden_size * 3], \
bias_hh[hidden_size * 3:hidden_size * 4]
w_i = np.concatenate([w_i_h, w_i_x], axis=1)
w_f = np.concatenate([w_f_h, w_f_x], axis=1)
w_c = np.concatenate([w_c_h, w_c_x], axis=1)
w_o = np.concatenate([w_o_h, w_o_x], axis=1)
b_f = b_f_h + b_f_x
b_i = b_i_h + b_i_x
b_c = b_c_h + b_c_x
b_o = b_o_h + b_o_x
c_t = np.zeros((1, hidden_size))
h_t = np.zeros((1, hidden_size))
sequence_output = []
for x_t in x:
x_t = x_t[np.newaxis, :]
hx = np.concatenate([h_t, x_t], axis=1)
# f_t = sigmoid(np.dot(x_t, w_f_x.T) + b_f_x + np.dot(h_t, w_f_h.T) + b_f_h)
f_t = sigmoid(np.dot(hx, w_f.T) + b_f)
# i_t = sigmoid(np.dot(x_t, w_i_x.T) + b_i_x + np.dot(h_t, w_i_h.T) + b_i_h)
i_t = sigmoid(np.dot(hx, w_i.T) + b_i)
# g = np.tanh(np.dot(x_t, w_c_x.T) + b_c_x + np.dot(h_t, w_c_h.T) + b_c_h)
g = np.tanh(np.dot(hx, w_c.T) + b_c)
c_t = f_t * c_t + i_t * g
# o_t = sigmoid(np.dot(x_t, w_o_x.T) + b_o_x + np.dot(h_t, w_o_h.T) + b_o_h)
o_t = sigmoid(np.dot(hx, w_o.T) + b_o)
h_t = o_t * np.tanh(c_t)
sequence_output.append(h_t)
return np.array(sequence_output), (h_t, c_t)
torch_sequence_output, (torch_h, torch_c) = torch_lstm(torch.Tensor([x]))
numpy_sequence_output, (numpy_h, numpy_c) = numpy_lstm(x, torch_lstm.state_dict())
print(torch_sequence_output)
print(numpy_sequence_output)
print("--------")
print(torch_h)
print(numpy_h)
print("--------")
print(torch_c)
print(numpy_c)
#############################################################
#使用pytorch的GRU层
torch_gru = nn.GRU(input_dim, hidden_size, batch_first=True)
# for key, weight in torch_gru.state_dict().items():
# print(key, weight.shape)
#将pytorch的GRU网络权重拿出来,用numpy通过矩阵运算实现GRU的计算
def numpy_gru(x, state_dict):
weight_ih = state_dict["weight_ih_l0"].numpy()
weight_hh = state_dict["weight_hh_l0"].numpy()
bias_ih = state_dict["bias_ih_l0"].numpy()
bias_hh = state_dict["bias_hh_l0"].numpy()
#pytorch将3个门的权重拼接存储,我们将它拆开
w_r_x, w_z_x, w_x = weight_ih[0:hidden_size, :], \
weight_ih[hidden_size:hidden_size * 2, :],\
weight_ih[hidden_size * 2:hidden_size * 3, :]
w_r_h, w_z_h, w_h = weight_hh[0:hidden_size, :], \
weight_hh[hidden_size:hidden_size * 2, :], \
weight_hh[hidden_size * 2:hidden_size * 3, :]
b_r_x, b_z_x, b_x = bias_ih[0:hidden_size], \
bias_ih[hidden_size:hidden_size * 2], \
bias_ih[hidden_size * 2:hidden_size * 3]
b_r_h, b_z_h, b_h = bias_hh[0:hidden_size], \
bias_hh[hidden_size:hidden_size * 2], \
bias_hh[hidden_size * 2:hidden_size * 3]
w_z = np.concatenate([w_z_h, w_z_x], axis=1)
w_r = np.concatenate([w_r_h, w_r_x], axis=1)
b_z = b_z_h + b_z_x
b_r = b_r_h + b_r_x
h_t = np.zeros((1, hidden_size))
sequence_output = []
for x_t in x:
x_t = x_t[np.newaxis, :]
hx = np.concatenate([h_t, x_t], axis=1)
z_t = sigmoid(np.dot(hx, w_z.T) + b_z)
r_t = sigmoid(np.dot(hx, w_r.T) + b_r)
h = np.tanh(r_t * (np.dot(h_t, w_h.T) + b_h) + np.dot(x_t, w_x.T) + b_x)
h_t = (1 - z_t) * h + z_t * h_t
sequence_output.append(h_t)
return np.array(sequence_output), h_t
# torch_sequence_output, torch_h = torch_gru(torch.Tensor([x]))
# numpy_sequence_output, numpy_h = numpy_gru(x, torch_gru.state_dict())
#
# print(torch_sequence_output)
# print(numpy_sequence_output)
# print("--------")
# print(torch_h)
# print(numpy_h)
5.6 文本分类-CNN
5.6.1 文本分类-TextCNN
- 利用一维卷积对文本进行编码编码后的文本矩阵通过pooling转化为向量,用于分类
5.6.2 文本分类-Gated CNN
对CNN的一种改进
5.6.3 代码
import torch
import torch.nn as nn
import numpy as np
#使用pytorch的1维卷积层
input_dim = 7
hidden_size = 8
kernel_size = 2
torch_cnn1d = nn.Conv1d(input_dim, hidden_size, kernel_size)
for key, weight in torch_cnn1d.state_dict().items():
print(key, weight.shape)
x = torch.rand((7, 4)) #embedding_size * max_length
def numpy_cnn1d(x, state_dict):
weight = state_dict["weight"].numpy()
bias = state_dict["bias"].numpy()
sequence_output = []
for i in range(0, x.shape[1] - kernel_size + 1):
window = x[:, i:i+kernel_size]
kernel_outputs = []
for kernel in weight:
kernel_outputs.append(np.sum(kernel * window))
sequence_output.append(np.array(kernel_outputs) + bias)
return np.array(sequence_output).T
print(x.shape)
print(torch_cnn1d(x.unsqueeze(0)))
print(torch_cnn1d(x.unsqueeze(0)).shape)
print(numpy_cnn1d(x.numpy(), torch_cnn1d.state_dict()))
5.7 文本分类-TextRCNN
5.8 文本分类-Bert
- Bert作为Encoder将文本转化为向量或矩阵
BERT(Bidirectional Encoder Representations from Transformers)在文本分类上有如下特点:
- 双向编码:BERT能够同时考虑一个词前后的上下文,提供丰富的语义信息。
- 预训练:BERT模型先进行大规模文本数据上的预训练,然后微调用于特定的文本分类任务。
- 高性能:由于其强大的编码能力,BERT在多项NLP任务,包括文本分类上都表现优异。
- 易于微调:已预训练的BERT模型很容易通过少量标注数据进行微调,以适应特定的分类任务。
- 计算复杂:虽然效果好,但BERT模型通常较大,需要更多的计算资源。
- 多用途:除了文本分类,BERT还广泛用于问答、实体识别等多种NLP任务。
- 灵活性:可以与其他模型结合,如CNN、RNN等,用于特定场景的文本分类。
总的来说,BERT由于其强大的编码能力和高度的灵活性,已经成为文本分类和其他NLP任务中的一种主流方法。
5.9 代码演示
5.9.1 config.py
# -*- coding: utf-8 -*-
"""
配置参数信息
"""
Config = {
"model_path": "output",
"train_data_path": "../data/train_tag_news.json",
"valid_data_path": "../data/valid_tag_news.json",
"vocab_path":"chars.txt",
"model_type":"lstm",
"max_length": 20,
"hidden_size": 128,
"kernel_size": 3,
"num_layers": 2,
"epoch": 15,
"batch_size": 64,
"pooling_style":"max",
"optimizer": "adam",
"learning_rate": 1e-3,
"pretrain_model_path":r"F:\Desktop\work_space\pretrain_models\bert-base-chinese",
"seed": 987
}
5.9.2 model.py
# -*- coding: utf-8 -*-
import torch
import torch.nn as nn
from torch.optim import Adam, SGD
from transformers import BertModel
"""
建立网络模型结构
"""
class TorchModel(nn.Module):
def __init__(self, config):
super(TorchModel, self).__init__()
hidden_size = config["hidden_size"]
vocab_size = config["vocab_size"] + 1
class_num = config["class_num"]
model_type = config["model_type"]
num_layers = config["num_layers"]
self.use_bert = False
self.embedding = nn.Embedding(vocab_size, hidden_size, padding_idx=0)
if model_type == "fast_text":
self.encoder = lambda x: x
elif model_type == "lstm":
self.encoder = nn.LSTM(hidden_size, hidden_size, num_layers=num_layers)
elif model_type == "gru":
self.encoder = nn.GRU(hidden_size, hidden_size, num_layers=num_layers)
elif model_type == "rnn":
self.encoder = nn.RNN(hidden_size, hidden_size, num_layers=num_layers)
elif model_type == "cnn":
self.encoder = CNN(config)
elif model_type == "gated_cnn":
self.encoder = GatedCNN(config)
elif model_type == "stack_gated_cnn":
self.encoder = StackGatedCNN(config)
elif model_type == "rcnn":
self.encoder = RCNN(config)
elif model_type == "bert":
self.use_bert = True
self.encoder = BertModel.from_pretrained(config["pretrain_model_path"])
hidden_size = self.encoder.config.hidden_size
elif model_type == "bert_lstm":
self.use_bert = True
self.encoder = BertLSTM(config)
hidden_size = self.encoder.bert.config.hidden_size
elif model_type == "bert_cnn":
self.use_bert = True
self.encoder = BertCNN(config)
hidden_size = self.encoder.bert.config.hidden_size
elif model_type == "bert_mid_layer":
self.use_bert = True
self.encoder = BertMidLayer(config)
hidden_size = self.encoder.bert.config.hidden_size
self.classify = nn.Linear(hidden_size, class_num)
self.pooling_style = config["pooling_style"]
self.loss = nn.functional.cross_entropy #loss采用交叉熵损失
#当输入真实标签,返回loss值;无真实标签,返回预测值
def forward(self, x, target=None):
if self.use_bert: # bert返回的结果是 (sequence_output, pooler_output)
x = self.encoder(x)
else:
x = self.embedding(x) # input shape:(batch_size, sen_len)
x = self.encoder(x) # input shape:(batch_size, sen_len, input_dim)
if isinstance(x, tuple): #RNN类的模型会同时返回隐单元向量,我们只取序列结果
x = x[0]
#可以采用pooling的方式得到句向量
if self.pooling_style == "max":
self.pooling_layer = nn.MaxPool1d(x.shape[1])
else:
self.pooling_layer = nn.AvgPool1d(x.shape[1])
x = self.pooling_layer(x.transpose(1, 2)).squeeze() #input shape:(batch_size, sen_len, input_dim)
#也可以直接使用序列最后一个位置的向量
# x = x[:, -1, :]
predict = self.classify(x) #input shape:(batch_size, input_dim)
if target is not None:
return self.loss(predict, target.squeeze())
else:
return predict
class CNN(nn.Module):
def __init__(self, config):
super(CNN, self).__init__()
hidden_size = config["hidden_size"]
kernel_size = config["kernel_size"]
pad = int((kernel_size - 1)/2)
self.cnn = nn.Conv1d(hidden_size, hidden_size, kernel_size, bias=False, padding=pad)
def forward(self, x): #x : (batch_size, max_len, embeding_size)
return self.cnn(x.transpose(1, 2)).transpose(1, 2)
class GatedCNN(nn.Module):
def __init__(self, config):
super(GatedCNN, self).__init__()
self.cnn = CNN(config)
self.gate = CNN(config)
def forward(self, x):
a = self.cnn(x)
b = self.gate(x)
b = torch.sigmoid(b)
return torch.mul(a, b)
class StackGatedCNN(nn.Module):
def __init__(self, config):
super(StackGatedCNN, self).__init__()
self.num_layers = config["num_layers"]
self.hidden_size = config["hidden_size"]
#ModuleList类内可以放置多个模型,取用时类似于一个列表
self.gcnn_layers = nn.ModuleList(
GatedCNN(config) for i in range(self.num_layers)
)
self.ff_liner_layers1 = nn.ModuleList(
nn.Linear(self.hidden_size, self.hidden_size) for i in range(self.num_layers)
)
self.ff_liner_layers2 = nn.ModuleList(
nn.Linear(self.hidden_size, self.hidden_size) for i in range(self.num_layers)
)
self.bn_after_gcnn = nn.ModuleList(
nn.LayerNorm(self.hidden_size) for i in range(self.num_layers)
)
self.bn_after_ff = nn.ModuleList(
nn.LayerNorm(self.hidden_size) for i in range(self.num_layers)
)
def forward(self, x):
#仿照bert的transformer模型结构,将self-attention替换为gcnn
for i in range(self.num_layers):
gcnn_x = self.gcnn_layers[i](x)
x = gcnn_x + x #通过gcnn+残差
x = self.bn_after_gcnn[i](x) #之后bn
# # 仿照feed-forward层,使用两个线性层
l1 = self.ff_liner_layers1[i](x) #一层线性
l1 = torch.relu(l1) #在bert中这里是gelu
l2 = self.ff_liner_layers2[i](l1) #二层线性
x = self.bn_after_ff[i](x + l2) #残差后过bn
return x
class RCNN(nn.Module):
def __init__(self, config):
super(RCNN, self).__init__()
hidden_size = config["hidden_size"]
self.rnn = nn.RNN(hidden_size, hidden_size)
self.cnn = GatedCNN(config)
def forward(self, x):
x, _ = self.rnn(x)
x = self.cnn(x)
return x
class BertLSTM(nn.Module):
def __init__(self, config):
super(BertLSTM, self).__init__()
self.bert = BertModel.from_pretrained(config["pretrain_model_path"])
self.rnn = nn.LSTM(self.bert.config.hidden_size, self.bert.config.hidden_size, batch_first=True)
def forward(self, x):
x = self.bert(x)[0]
x, _ = self.rnn(x)
return x
class BertCNN(nn.Module):
def __init__(self, config):
super(BertCNN, self).__init__()
self.bert = BertModel.from_pretrained(config["pretrain_model_path"])
config["hidden_size"] = self.bert.config.hidden_size
self.cnn = CNN(config)
def forward(self, x):
x = self.bert(x)[0]
x = self.cnn(x)
return x
class BertMidLayer(nn.Module):
def __init__(self, config):
super(BertMidLayer, self).__init__()
self.bert = BertModel.from_pretrained(config["pretrain_model_path"])
self.bert.config.output_hidden_states = True
def forward(self, x):
layer_states = self.bert(x)[2]
layer_states = torch.add(layer_states[-2], layer_states[-1])
return layer_states
#优化器的选择
def choose_optimizer(config, model):
optimizer = config["optimizer"]
learning_rate = config["learning_rate"]
if optimizer == "adam":
return Adam(model.parameters(), lr=learning_rate)
elif optimizer == "sgd":
return SGD(model.parameters(), lr=learning_rate)
if __name__ == "__main__":
from config import Config
# Config["class_num"] = 3
# Config["vocab_size"] = 20
# Config["max_length"] = 5
Config["model_type"] = "bert"
model = BertModel.from_pretrained(Config["pretrain_model_path"])
x = torch.LongTensor([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]])
sequence_output, pooler_output = model(x)
print(x[2], type(x[2]), len(x[2]))
# model = TorchModel(Config)
# label = torch.LongTensor([1,2])
# print(model(x, label))
5.9.3 main.py
# -*- coding: utf-8 -*-
import torch
import os
import random
import os
import numpy as np
import logging
from config import Config
from model import TorchModel, choose_optimizer
from evaluate import Evaluator
from loader import load_data
#[DEBUG, INFO, WARNING, ERROR, CRITICAL]
logging.basicConfig(level=logging.INFO, format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
"""
模型训练主程序
"""
seed = Config["seed"]
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def main(config):
#创建保存模型的目录
if not os.path.isdir(config["model_path"]):
os.mkdir(config["model_path"])
#加载训练数据
train_data = load_data(config["train_data_path"], config)
#加载模型
model = TorchModel(config)
# 标识是否使用gpu
cuda_flag = torch.cuda.is_available()
if cuda_flag:
logger.info("gpu可以使用,迁移模型至gpu")
model = model.cuda()
#加载优化器
optimizer = choose_optimizer(config, model)
#加载效果测试类
evaluator = Evaluator(config, model, logger)
#训练
for epoch in range(config["epoch"]):
epoch += 1
model.train()
logger.info("epoch %d begin" % epoch)
train_loss = []
for index, batch_data in enumerate(train_data):
if cuda_flag:
batch_data = [d.cuda() for d in batch_data]
optimizer.zero_grad()
input_ids, labels = batch_data #输入变化时这里需要修改,比如多输入,多输出的情况
loss = model(input_ids, labels)
loss.backward()
optimizer.step()
train_loss.append(loss.item())
if index % int(len(train_data) / 2) == 0:
logger.info("batch loss %f" % loss)
logger.info("epoch average loss: %f" % np.mean(train_loss))
acc = evaluator.eval(epoch)
# model_path = os.path.join(config["model_path"], "epoch_%d.pth" % epoch)
# torch.save(model.state_dict(), model_path) #保存模型权重
return acc
if __name__ == "__main__":
main(Config)
# for model in ["cnn"]:
# Config["model_type"] = model
# print("最后一轮准确率:", main(Config), "当前配置:", Config["model_type"])
#对比所有模型
#中间日志可以关掉,避免输出过多信息
# 超参数的网格搜索
# for model in ["gated_cnn"]:
# Config["model_type"] = model
# for lr in [1e-3]:
# Config["learning_rate"] = lr
# for hidden_size in [128]:
# Config["hidden_size"] = hidden_size
# for batch_size in [64, 128]:
# Config["batch_size"] = batch_size
# for pooling_style in ["avg"]:
# Config["pooling_style"] = pooling_style
# print("最后一轮准确率:", main(Config), "当前配置:", Config)
5.9.4 loader.py
# -*- coding: utf-8 -*-
import json
import re
import os
import torch
import numpy as np
from torch.utils.data import Dataset, DataLoader
from transformers import BertTokenizer
"""
数据加载
"""
class DataGenerator:
def __init__(self, data_path, config):
self.config = config
self.path = data_path
self.index_to_label = {0: '家居', 1: '房产', 2: '股票', 3: '社会', 4: '文化',
5: '国际', 6: '教育', 7: '军事', 8: '彩票', 9: '旅游',
10: '体育', 11: '科技', 12: '汽车', 13: '健康',
14: '娱乐', 15: '财经', 16: '时尚', 17: '游戏'}
self.label_to_index = dict((y, x) for x, y in self.index_to_label.items())
self.config["class_num"] = len(self.index_to_label)
if self.config["model_type"] == "bert":
self.tokenizer = BertTokenizer.from_pretrained(config["pretrain_model_path"])
self.vocab = load_vocab(config["vocab_path"])
self.config["vocab_size"] = len(self.vocab)
self.load()
def load(self):
self.data = []
with open(self.path, encoding="utf8") as f:
for line in f:
line = json.loads(line)
tag = line["tag"]
label = self.label_to_index[tag]
title = line["title"]
if self.config["model_type"] == "bert":
input_id = self.tokenizer.encode(title, max_length=self.config["max_length"], pad_to_max_length=True)
else:
input_id = self.encode_sentence(title)
input_id = torch.LongTensor(input_id)
label_index = torch.LongTensor([label])
self.data.append([input_id, label_index])
return
def encode_sentence(self, text):
input_id = []
for char in text:
input_id.append(self.vocab.get(char, self.vocab["[UNK]"]))
input_id = self.padding(input_id)
return input_id
#补齐或截断输入的序列,使其可以在一个batch内运算
def padding(self, input_id):
input_id = input_id[:self.config["max_length"]]
input_id += [0] * (self.config["max_length"] - len(input_id))
return input_id
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.data[index]
def load_vocab(vocab_path):
token_dict = {}
with open(vocab_path, encoding="utf8") as f:
for index, line in enumerate(f):
token = line.strip()
token_dict[token] = index + 1 #0留给padding位置,所以从1开始
return token_dict
#用torch自带的DataLoader类封装数据
def load_data(data_path, config, shuffle=True):
dg = DataGenerator(data_path, config)
dl = DataLoader(dg, batch_size=config["batch_size"], shuffle=shuffle)
return dl
if __name__ == "__main__":
from config import Config
dg = DataGenerator("valid_tag_news.json", Config)
print(dg[1])
5.9.5 evaluate.py
# -*- coding: utf-8 -*-
import torch
from loader import load_data
"""
模型效果测试
"""
class Evaluator:
def __init__(self, config, model, logger):
self.config = config
self.model = model
self.logger = logger
self.valid_data = load_data(config["valid_data_path"], config, shuffle=False)
self.stats_dict = {"correct":0, "wrong":0} #用于存储测试结果
def eval(self, epoch):
self.logger.info("开始测试第%d轮模型效果:" % epoch)
self.model.eval()
self.stats_dict = {"correct": 0, "wrong": 0} # 清空上一轮结果
for index, batch_data in enumerate(self.valid_data):
if torch.cuda.is_available():
batch_data = [d.cuda() for d in batch_data]
input_ids, labels = batch_data #输入变化时这里需要修改,比如多输入,多输出的情况
with torch.no_grad():
pred_results = self.model(input_ids) #不输入labels,使用模型当前参数进行预测
self.write_stats(labels, pred_results)
acc = self.show_stats()
return acc
def write_stats(self, labels, pred_results):
assert len(labels) == len(pred_results)
for true_label, pred_label in zip(labels, pred_results):
pred_label = torch.argmax(pred_label)
if int(true_label) == int(pred_label):
self.stats_dict["correct"] += 1
else:
self.stats_dict["wrong"] += 1
return
def show_stats(self):
correct = self.stats_dict["correct"]
wrong = self.stats_dict["wrong"]
self.logger.info("预测集合条目总量:%d" % (correct +wrong))
self.logger.info("预测正确条目:%d,预测错误条目:%d" % (correct, wrong))
self.logger.info("预测准确率:%f" % (correct / (correct + wrong)))
self.logger.info("--------------------")
return correct / (correct + wrong)
6. 数据稀疏问题
- 训练数据量小,模型在训练样本上能收敛,但预测准确率很低
- 解决方案:
-
- 标注更多的数据
-
- 尝试构造训练样本(数据增强)
-
- 更换模型(如使用预训练模型等)减少数据需求
-
- 增加规则弥补
-
- 调整阈值,用召回率换准确率
-
- 重新定义类别(减少类别)
7. 标签不均衡问题
- 部分类别样本充裕,部分类别样本极少
- 解决办法:
- 解决数据稀疏的所有的方法依然适用
-
- 过采样 复制指定类别的样本,在采样中重复
-
- 降采样 减少多样本类别的采样,随机使用部分
-
- 调整样本权重 通过损失函数权重调整来体现
8. 多标签分类问题
- 多标签 不同于 多分类
- 电影描述: 战斗中负伤而下身瘫痪的前海军战士杰克·萨利(萨姆·沃辛顿 Sam Worthington 饰)决定替死去的同胞哥哥来到潘多拉星操纵格蕾丝博士(西格妮·韦弗 Sigourney Weaver 饰)用人类基因与当地纳美部族基因结合创造出的 “阿凡达” 混血生物……
- 标签:动作,科幻
- 多标签问题的转化
-
- 分解为多个独立的二分类问题
-
- 将多标签分类问题转换为多分类问题
-
- 更换loss直接由模型进行多标签分类
9. BCELoss
- 直接更换loss函数
代码
import torch
import torch.nn as nn
m = nn.Sigmoid()
bceloss = nn.BCELoss()
input = torch.randn(5)
target = torch.FloatTensor([1,0,1,0,0])
output = bceloss(m(input), target)
print(output)
celoss = nn.CrossEntropyLoss()
input = torch.FloatTensor([[0.1,0.2,0.3,0.1,0.3],[0.1,0.2,0.3,0.1,0.3]])
target = torch.LongTensor([2,3])
output = celoss(input, target)
print(output)