回归预测 | MATLAB实现SSA-ELM麻雀搜索算法优化极限学习机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现SSA-ELM麻雀搜索算法优化极限学习机多输入单输出回归预测(多指标,多图)

目录

    • 回归预测 | MATLAB实现SSA-ELM麻雀搜索算法优化极限学习机多输入单输出回归预测(多指标,多图)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

1
2
3

基本介绍

回归预测 | MATLAB实现SSA-ELM麻雀搜索算法优化极限学习机多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。
麻雀搜索算法(Sparrow Search Algorithm)是一种基于自然界麻雀觅食行为的启发式优化算法,用于解决优化问题。而极限学习机(Extreme Learning Machine,简称ELM)是一种机器学习算法,用于解决分类和回归问题。首先,需要明确你要优化的目标函数。在极限学习机中,通常会使用某种损失函数来衡量预测结果与真实结果之间的差异。你可以将这个损失函数作为目标函数,通过麻雀搜索算法来最小化或最大化这个目标函数。极限学习机中有一些参数需要进行调优,例如隐层神经元的数量、输入层与隐层之间的连接权重等。你可以将这些参数作为优化的变量,在搜索过程中不断调整它们的取值,以找到最优的参数组合。麻雀搜索算法的核心是模拟麻雀觅食的行为,这包括探索和利用两个方面。你可以设计一种策略,使得搜索过程中既能进行全局的探索,又能尽快收敛到更优的解。例如,可以引入一定的随机性来增加搜索的多样性,或者使用启发式的方法来指导搜索方向。在使用麻雀搜索算法优化极限学习机时,需要对算法进行评估和调整。可以通过与其他优化算法进行比较,或者在不同的测试函数上进行实验,来评估算法的性能。根据评估结果,对算法的参数或策略进行调整,以提高算法的效果。

程序设计

  • 完整源码和数据获取方式:私信回复SSA-ELM麻雀搜索算法优化极限学习机多输入单输出回归预测(多指标,多图)
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('data.xlsx');

%%  划分训练集和测试集
temp = randperm(103);

P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);

P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);



%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);



%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/92319.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2000-2021年上市公司绿色投资环保投资与营业收入之比数据(原始数据+计算代码+计算结果)

2000-2021年上市公司绿色投资环保投资与营业收入之比数据(原始数据计算代码计算结果) 1、时间:2000-2021年 2、来源:上市公司年报 3、指标:证券代码、企业名称、年份、管理费用环保投资、管理费用环保投资/营业收入…

第 360 场 LeetCode 周赛题解

A 距离原点最远的点 串中的 “_” 处要么都向左走要么都向右走 class Solution { public:int furthestDistanceFromOrigin(string moves) {int t 0;for (auto x: moves)if (x ! R)t--;elset;int res abs(t);t 0;for (auto x: moves)if (x ! L)t;elset--;res max(res, abs(t…

0821|C++day1 初步认识C++

一、思维导图 二、知识点回顾 【1】QT软件的使用 1)创建文件 创建文件时,文件的路径一定是全英文 2)修改编码 工具--->选项--->行为--->默认编码:system 【2】C和C的区别 C又叫C plus plus,C是对C的扩充&…

基于React实现日历组件详细教程

前言 日历组件是常见的日期时间相关的组件,围绕日历组件设计师做出过各种尝试,展示的形式也是五花八门。但是对于前端开发者来讲,主要我们能够掌握核心思路,不管多么奇葩的设计我们都能够把它做出来。 本文将详细分析如何渲染一…

WPF基础入门-Class2-样式

WPF基础入门 Class2&#xff1a;样式 1、内联样式&#xff1a;优先度最高 <Grid><StackPanel><!--内联样式优先度高--><Button Background"Red" Height"10" Width"100"FontSize"20"Content"SB">…

Fabric.js 元素选中状态的事件与样式

本文简介 带尬猴&#xff01; 你是否在使用 Fabric.js 时希望能在选中元素后自定义元素样式或选框&#xff08;控制角和辅助线&#xff09;的样式&#xff1f; 如果是的话&#xff0c;可以放心往下读。 本文将手把脚和你一起过一遍 Fabric.js 在对象元素选中后常用的样式设置…

vue2.6及以下版本导入 TDesign UI组件库

TDesign 官方文档:https://tdesign.tencent.com/vue/components/button 我们先打开一个普通的vue项目 然后 如果你是 vue 2.6 或者 低于 2.6 在终端执行 npm i tdesign-vue如果你是 2.7 或者更高 执行 npm i tdesign-vuenaruto这里 我们 以 2.6为例 因为大部分人 用vue2 都是…

【TI毫米波雷达笔记】UART串口外设配置及驱动(以IWR6843AOP为例)

【TI毫米波雷达笔记】UART串口外设初始化配置及驱动&#xff08;以IWR6843AOP为例&#xff09; 最基本的工程建立好以后 需要给SOC进行初始化配置 int main (void) {//刷一下内存memset ((void *)L3_RAM_Buf, 0, sizeof(L3_RAM_Buf));int32_t errCode; //存放SOC初…

软件设计师学习笔记5-流水线技术

目录 1.流水线的概念 2.流水线计算 2.1流水线周期及执行时间 2.2流水线吞吐量 1.流水线的概念 考点&#xff1a;相关参数计算&#xff1a;流水线执行时间计算、流水线吞吐率、流水线加速比、流水线效率(后两者的计算中级不考) 流水线是指在程序执行时多条指令重叠进行操作…

Tomcat10安装及配置教程win11

Tomcat10安装及配置教程win11 Tomcat下载链接 Tomcat官网 Tomcat官网地址 https://tomcat.apache.org/ Tomcat的版本列表 点击上图中左侧红框内**Which version?**即可得下图 下载Tomcat 点击上图中左侧红框内红框内tomcat版本即可得下图&#xff0c;下载zip包 解压zip包…

网络安全基础知识

网络安全 1、网络安全的介绍 1.1 什么是网络安全 1.2 什么是信息系统 1.3 信息系统安全三要素 1.4 什么是网络空间安全 fireye攻击地图:https:www.fireeye.com/cyber-map/threat-map.html/. https://cybermap.kaspersky.com 1.5 安全事件分类 1.6 安全事件 勒索加密是黑客攻…

Scikit-Learn中的特征选择和特征提取详解

概要 机器学习在现代技术中扮演着越来越重要的角色。不论是在商业界还是科学领域&#xff0c;机器学习都被广泛地应用。在机器学习的过程中&#xff0c;我们需要从原始数据中提取出有用的特征&#xff0c;以便训练出好的模型。但是&#xff0c;如何选择最佳的特征是一个关键问…

解决MASM32代码汇编出错: error A2181: initializer must be a string or single item

最近用MASM32编程更新SysInfo&#xff0c;增加对IPv6连接信息的收集&#xff0c;使用到了 typedef struct _MIB_TCP6ROW_OWNER_MODULE {UCHAR ucLocalAddr[16];DWORD dwLocalScopeId;DWORD dwLocalPort;UCHAR ucRemoteAddr[16];DWORD …

【腾讯云 TDSQL-C Serverless 产品测评】“橡皮筋“一样的数据库『MySQL高压篇』

【腾讯云 TDSQL-C Serverless 产品测评】"橡皮筋"一样的数据库 活动介绍服务一览何为TDSQL &#xff1f;Serverless 似曾相识&#xff1f; 降本增效&#xff0c;不再口号&#xff1f;动手环节 --- "压力"山大实验前瞻稍作简介资源扩缩范围&#xff08;CCU&…

飞天使-k8s基础组件分析-服务与ingress

文章目录 服务的介绍服务代理服务发现连接集群外服务服务发布无头服务 服务&#xff0c;pod和dns的关系端口转发通过expose 暴露应用服务案例INGRESSMetalLB使用参考文档 服务的介绍 服务的作用是啥&#xff1f; 提供外部调用&#xff0c;保证podip的真实性看看服务解决了什么…

实时同步ES技术选型:Mysql+Canal+Adapter+ES+Kibana

基于之前的文章&#xff0c;精简操作而来 让ELK在同一个docker网络下通过名字直接访问Ubuntu服务器ELK部署与实践使用 Docker 部署 canal 服务实现MySQL和ES实时同步Docker部署ES服务&#xff0c;canal全量同步的时候内存爆炸&#xff0c;ES/Canal Adapter自动关闭&#xff0c…

Modbus转Profinet网关连接三菱变频器博图快速配置

本案例将分享如何使用兴达易控的modbus转profinet网关&#xff08;XD-MDPN100&#xff09;来连接西门子1200系列plc&#xff0c;并实现三菱变频器的485通讯兼容转modbusTCP通信。通过在博图中进行配置&#xff0c;我们可以实现设备之间的连接和通信。 首先&#xff0c;我们需要…

《QT+PCL 第五章》点云特征-PFH

QT增加点云特征PFH 代码用法代码 #include <pcl/io/pcd_io.h> #include <pcl/features/normal_3d.h> #include <pcl/features/pfh.h>int main

自动驾驶感知传感器标定安装说明

1. 概述 本标定程序为整合现开发的高速车所有标定模块,可实现相机内参标定和激光、相机、前向毫米波 至车辆后轴中心标定,标定参数串联传递并提供可视化工具验证各个模块标定精度。整体标定流程如下,标定顺序为下图前标0-->1-->2-->3,相同编号标定顺序没有强制要求…

android外卖点餐界面(期末作业)

效果展示&#xff1a; AndroidMainFest.xml <?xml version"1.0" encoding"utf-8"?> <manifest xmlns:android"http://schemas.android.com/apk/res/android"xmlns:tools"http://schemas.android.com/tools"><a…