单片机_简单AI模型训练与部署__从0到0.9

IDE: CLion

MCU: STM32F407VET6

一、导向

以求知为导向,从问题到寻求问题解决的方法,以兴趣驱动学习。

        虽从0,但不到1,剩下的那一小步将由你迈出。本篇主要目的是体验完整的一次简单AI模型部署流程,从数据采集到模型创建与训练,再到部署单片机上。选定的训练方向也非常简单,既不是手势识别、语音识别等这些较为复杂的模型,也不是使用一些第三方的预训练模型,而是简简单单地“调包”搭建一个判断输入数字大小的小模型,比如在判断输入数据是否小于24。最终生成的C代码其内存、存储占用均为10KB,也可缩减至不到1KB

        既然是“从零开始”,那么就不需要介绍太多复杂的术语解释,但一些基本的概念还是需要了解的。该篇最主要的目的就是体验,不需要知道太多为什么,真正上手实践后,再自行学习

        此处所指的单片机是STM32系列(stm32f407vet6)

二、流程

1,STM32CubeMX的AI插件

        想要触碰一个未曾熟知的领域,最重要的是要搜集信息,了解要干什么、怎么干,然后简单体验一番。那么第一步来了,我们的问题很简单,stm32单片机上怎么跑AI。带着这个问题我们使用搜索引擎可以得到一些博客,什么模型搭建、部署什么的可能也听不大懂。

        但从这些博客里我们可以找到一个共同点,那就是都使用到了STM32CubeMX,虽然AI模型相关的不太懂,但这个工具软件可太熟了。

        从这里我们可以获取另一个关键点,就目前所获取的信息来看stm32单片机上跑AI应是依赖STM32CubeMX的AI插件的。至于怎么配置这个AI插件,相关的博客有很多


 

2,AI模型

        当你兴冲冲地使用CubeMX上的AI插件时,你可能会发现,缺少一件东西——AI模型

        回想到前面回答中,通义(通义千问)说过导入模型

        虽然网上相关博客有不少,什么手势识别、神经网络算法等等,但几乎没有几个是直接给你一个AI模型的,要么是到官网的github上找,要么是什么云盘。总之对于初学者而言,是有一些麻烦的

        接下来继续发挥“不会就问”的精神

        通义给了我们四个方案,但无论是官方给的,还是用什么第三方的,亦或者使用预训练模型的,总之都是有一些难度的。四种方案你可以逐一尝试,尝试下来后,你可能会发现预训练、官方模型库、第三方库这些方案太难了,因为涉及到大量陌生知识。

        自己训练模型看着比较可行,因为从下面可以看到,自己训练一个简单模型就两步,收集数据和python编程来训练模型。无论是收集数据,还是编程,似乎都是非常清晰的过程。

        当然,上面的结论也是问出来的。当通义给你一个问题的回答,而你对其中的一些概念又含混不清的时候,你可以把自己的猜测反问给通义,且不必担心通义出言不逊。

        反问后,无论你的猜测是否正确,你最终都会被指导一个正确的方向。

        既然确定了步骤,不妨问问更细节的一些东西,这里需要自行提问,下面提供一个简单的示例

3,数据采集

        前面说过,既然是初学者,那么一切从简,怎么简单怎么来。这里先说一个前置信息,AI模型训练需要的数据集,一般是保存在.csv文件里的,打开后你会发现这跟Excel表格大差不差。

        使用记事本打开后,你会发现头部会有一些标签,数据是按照列来排布的

        左边那一列是输入的数据,右边那一列是输出的结果,当然也可以称为类别

        训练AI模型时,会用你收集到的这个数据集训练,以图中这个数据为例(二分类问题),给它左边的输入数据,让AI模型输出,然后与数据集中的右边的输出对比,来判断AI预测的结果,之后AI再不断调整权重、参数什么的,让预测更加精准。

        这些前置信息,你自己也是可以收集的。这里,我们是需要一个数据集来帮我们训练,也知道数据集长成什么样子。从一些博客或者AI我们可以了解到,一般的数据集都是什么图像相关的,什么矩阵、像素、灰度之类的,那显然还是有些难度的。

        所以接下来,我们讨论更简单的情况,就是给AI一个数据,让它判断是不是小于一个数,小于就输出1,大于就输出0。是不是简单很多了?

4、训练模型

        我们首先要清楚,STM32上跑的这个AI模型其实是神经网络模型,它们之间的关系是这样的:

        AI(人工智能)>  机器学习 > 深度学习 神经网络模型(非传统神经网络)

        总之经过一系列问询之后,我们可以选择Keras TensorFlow Lite。这是一个神经网络框架,不要害怕陌生的术语名称,它只是用于训练AI的工具(你也可以理解为库或包)。

        这里我补充一点就是,STM32CubeMX其实对Keras的支持其实并不算好,我们后续真正使用的是后者。

三、采集数据

        正如前面所言,为了简单体验这个流程,我们就以那个判断数字是否小于某个数为训练目的。当体验过这个简单流程后,你可以放飞自我去训练了。

        这里不说怎么安装Pycharm什么的,因为这是最基本的能力。

        现在我们把训练目的具体化:在0-100内,判断出这个数据是否小于24。那么我们就需要生成这样的数据,为了保真,还得让数据随机起来,且小于24的和大于24的概率还不同,以增加些许难度。

        这个数据可以使用python生成,那么怎么写python脚本呢?从变量命名、标识符开始学一遍python?那是大可不必的,不需要掌握python(因为你至少已掌握了C语言),只需要知道怎么让通义生成正确的代码就行了

        通义生成的代码不一定可用,你把报错信息或者调试信息给它,提供给它需求,让它不断更新代码直至生成可用的代码。这里不展开细节了,下面就是可用的python代码,如果你是新安装的pycharm,那么可能会提示安装一些库,安装软件包的过程可能会有些漫长,这都是正常现象。有时间了可以自行查资料解决

import numpy as np
import pandas as pd

# 参数设置
filename = 'simulated_data.csv'
num_points = 100000
threshold = 24  # 触发阈值
low_value_frequency = 0.33  # 低于24的值的概率

# 生成数据
np.random.seed(0)
data = np.random.randint(0, 101, num_points)  # 生成0到100的整型数据

# 生成低于24的值
low_values = np.random.binomial(1, low_value_frequency, num_points)
data[low_values == 1] = np.random.randint(0, 24, np.sum(low_values))

# 标记是否触发阈值
labels = (data < threshold).astype(int)

# 创建DataFrame
df = pd.DataFrame({'value': data, 'label': labels})

# 保存到CSV文件
df.to_csv(filename, index=False)

print(f"数据已生成并保存到 {filename}")

        正确执行完后,当前目录下就会有一个simulated_data.csv文件。

四、训练模型

        虽然听着不明觉厉,其实这里我们只用非常简单有限的步骤,因为框架已经帮我们做好了绝大部分工作了。

        问询你可以描述得更加具体

        总之,多次让AI改进后,可以得到了一份可以训练刚才数据的代码

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from keras.src.callbacks import ModelCheckpoint
from keras.src.layers import GRU
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.models import save_model
import tensorflow as tf
import subprocess

# 数据加载
df = pd.read_csv('simulated_data.csv')
X = df['value'].values.reshape(-1, 1)  # 特征值需要reshape为2D数组
y = df['label'].values

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 创建模型
model = Sequential([
    Dense(10, input_shape=(1,), activation='relu'),  # 输入层(同时也是隐藏层)
    # Dense(1, activation='sigmoid')  # 输出层
    # GRU(16, input_shape=(1, 1), return_sequences=False),  # 添加GRU层,32个单元,输入形状为 (1, 1),不返回序列
    Dense(18, activation='relu'),  # 添加一个全连接层,32个神经元,使用ReLU激活函数
    Dense(1, activation='sigmoid')  # 添加全连接层,输出1个节点,使用sigmoid激活函数
])

# 编译模型
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# 设置 ModelCheckpoint 回调函数
checkpoint = ModelCheckpoint('best_model.keras', monitor='val_accuracy', save_best_only=True, mode='max')

# 训练模型
history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=78, batch_size=60)

# 绘制训练过程中的损失
plt.figure(figsize=(12, 6))
plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.title('Model Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()

# 绘制训练过程中的准确率
plt.figure(figsize=(12, 6))
plt.plot(history.history['accuracy'], label='Training Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.title('Model Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()

# 模型保存
save_model(model, 'model/stm32_model.keras')
# 将 .keras 模型转换为 .tflite 格式
converter = tf.lite.TFLiteConverter.from_keras_model(model)

# # 使用 Select TF Ops,虽然允许把Keras转为TFLite模型,但是CubeMX的AI插件不支持
# converter.target_spec.supported_ops = [
#     tf.lite.OpsSet.TFLITE_BUILTINS,  # 支持 TFLite 内置操作
#     tf.lite.OpsSet.SELECT_TF_OPS     # 支持 TensorFlow 原生操作
# ]
# # 禁用实验性降低张量列表操作
# converter._experimental_lower_tensor_list_ops = False

tflite_model = converter.convert()

# 保存 TFLite 模型
with open('model/stm32_model.tflite', 'wb') as f:
    f.write(tflite_model)
print("TFLite 模型已保存")

# # 下面出了问题
# # 加载最佳模型
# best_model = tf.keras.models.load_model('best_model.keras')
#
# # 保存最佳模型
# save_model(best_model, 'model/stm32_best_model.keras')
#
# # 将 .keras 模型转换为 .tflite 格式
# # 转换模型
# tflite_model = converter.convert()
#
# # 保存 TFLite 模型
# with open('model/stm32_best_model.tflite', 'wb') as f:
#     f.write(tflite_model)
#
# print("TFLite best模型已保存")

        这个代码,即便你安装了所有软件包可能还会报错,这都是正常现象,可以不用管它

        训练模型这一步,步骤非常清晰明了

①加载数据

②创建模型

这里面可以看到三个函数,也就是三层神经网络,你想要增加,就再添加一个函数即可。只不过经过我的测试和官方文档说明,无法使用更加复杂的层,比如GRU层(陌生术语稍微过一下就行,暂时可以不必深究)

③编译模型

        回调函数先不用管它,可加可不加

④训练模型

        这里只要注意这两个参数即可,一个是epochs,另一个是batch_size。前者是训练轮数,后者是每批次训练的数据量

⑤评估模型

        这里其实就是图形化显示训练的结果,什么准确率、损失什么的

⑥保存模型

        这里可以看到,一开始模型格式为.keras,后面就编程了.tflite。原因就是前者格式STM32CubeMX的AI插件经常无法正常加载,报一些奇奇怪怪的错。

既然这样,我们看看运行之后是什么样子的

如果这是你的第一个AI模型,成就感满满了不是

右边的第二张图(还有一张在小窗口里),可以看到随着训练轮次增加,准确率也逐渐增加

        我们单看某一次的,可以发现正确率已经达到0.9988了,因为问题比较简单嘛。有时会达到1.00

五、部署推理

        既然模型已经训练完毕,接下来我们就可以在本地部署,然后进行推理看看效果怎么样。(加载训练好的模型,然后输入数据,看看AI的输出是什么样的)

        不过在此之前我们还要生成100个模拟数据,当做实际中的数据,用于验证模型的推理效果。

import numpy as np
import pandas as pd

# 参数设置
filename = 'simulated_data1.csv'
num_points = 100
threshold = 24  # 触发阈值
low_value_frequency = 0.33  # 低于24的值的概率

# 生成数据
np.random.seed(0)
data = np.random.randint(0, 101, num_points)  # 生成0到100的整型数据

# 生成低于24的值
low_values = np.random.binomial(1, low_value_frequency, num_points)
data[low_values == 1] = np.random.randint(0, 24, np.sum(low_values))

# 标记是否触发阈值
labels = (data < threshold).astype(int)

# 创建DataFrame
df = pd.DataFrame({'value': data, 'label': labels})

# 保存到CSV文件
df.to_csv(filename, index=False)

print(f"数据已生成并保存到 {filename}")

然后就是推理(预测)了

import numpy as np
from tensorflow.keras.models import load_model
import pandas as pd
import matplotlib.pyplot as plt

# 设置 matplotlib 使用的字体
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

# 加载模型
model = load_model('model/stm32_model.keras')

# 加载验证数据集
df = pd.read_csv('simulated_data1.csv')
X_test = df['value'].values.reshape(-1, 1, 1)
y_test = df['label'].values

# 进行推理
predictions = model.predict(X_test)
predicted_labels = (predictions > 0.5).astype(int)

# 输出详细结果
for i, value in enumerate(df['value']):
    print(f"输入数据: {value:.2f}, 预测结果: {predicted_labels[i][0]}, 实际标签: {y_test[i]}")

# 计算准确率
accuracy = np.mean(predicted_labels.squeeze() == y_test)
print(f"模型准确率: {accuracy * 100:.2f}%")

# 可视化预测结果和真实标签的对比
plt.figure(figsize=(12, 6))
plt.plot(y_test, label='真实标签', marker='o')
plt.plot(predicted_labels.squeeze(), label='预测结果', marker='x')
plt.title('真实标签 vs 预测结果')
plt.xlabel('样本索引')
plt.ylabel('标签')
plt.legend()
plt.show()

我们可以看到推理后的结果,这根本就难不倒它嘛

六、加载模型

        既然前面已经把模型训练了出来,接下来就可以把模型部署到单片机上了。下面先介绍一些分析模型时的问题

遇到这个提示后

  • 在注册表编辑器中,找到路径 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem
  • 修改或添加 LongPathsEnabled

    • 在 FileSystem 文件夹中查找名为 LongPathsEnabled 的DWORD (32-bit) 值。
    • 如果存在,双击它并将其值设置为 1
    • 如果不存在,右键点击 FileSystem 文件夹,选择 新建 -> DWORD (32-bit) 值,命名为 LongPathsEnabled,然后将其值设置为 1
  • 然后重启

        发生下面这个问题,比较奇葩,虽然提示说我们引入了batch_shape,但实际上我们没有显式引用。但只要把模型转为TFLite格式,同时不能直接使用GRU等高级层。

即便……你使用Select TF Ops,虽然可以转为TFLite模型,但是Cube的AI插件不能转换

# 模型保存
save_model(model, 'model/stm32_model.keras')
# 将 .keras 模型转换为 .tflite 格式
converter = tf.lite.TFLiteConverter.from_keras_model(model)
# 使用 Select TF Ops
converter.target_spec.supported_ops = [
    tf.lite.OpsSet.TFLITE_BUILTINS,  # 支持 TFLite 内置操作
    tf.lite.OpsSet.SELECT_TF_OPS     # 支持 TensorFlow 原生操作
]

# 禁用实验性降低张量列表操作
converter._experimental_lower_tensor_list_ops = False
tflite_model = converter.convert()

每次加载模型都要重新分析一遍 

1,生成C代码 

①添加AI插件

        这一步有太多博客介绍了,我就说一点,把下面那个Device也勾选上,选择最后一个应用模板即可。官方文档里也很详细

②添加模型

③分析模型

        点击分析即可,分析成功后应如下

        我们可以看到最后一句,由于前面训练模型时也是这样,输入和输出只有一个,这里输入和输出也是一个4字节(实际为float32)

        如果你想要知道模型的详细情况,可以选择这个选项,当然这都是后面了,可以自己尝试

④生成的文件

生成的模型代码就是这个文件夹了

以及Middlewares下面的这个AI库

2,移植库

        如果你移植很熟练的话,这一步也没什么难度。不过要说明的是,我的工程是cmake工程,移动文件后,只需要修改CMakelists就行了。如果是Keil或者IAR的话,需要手动图形化添加。

        不管是哪种,目的都一样,先把官方提供的AI库(是整个AI目录而不仅仅是Lib目录)添加到工程里,就是下面这个静态库.a

        在CMakelists里就是这样,前面是什么不重要,重要的是这个库前面要加上“:”,为什么呢?我从CubeMX生成工程的CMakelists里扒出来的就是这样(疑惑的话可以多问问通义等)

target_link_libraries(libai INTERFACE :NetworkRuntime910_CM4_GCC.a)
target_link_libraries(libai PRIVATE libdrivers)

        移植后,这个库的头文件也要包含进来,ST/AI/Inc

        然后是这个X-CUBE-AI,具体过程我不描述了,移植需要多尝试、去练,讲求的是经验

        总之,就两个东西,一个是官方的库,另一个是资源文件

3,使用

        前面选择软件包时,由于勾选了应用模板,所以会给我们生成。这些文件中,我们只要考虑这两个文件即可

        从这个头文件里可以看到,它提供了两个接口,一个是初始化,另一个是AI处理。

        到资源文件中,我们可以看到这两个函数是空的,我们先补充初始化函数,直接这样添加就行了,不用管什么错误判断,因为实际上这个ai_boostrap接口就已经做好了

void MX_X_CUBE_AI_Init(void)
{
    ai_boostrap(data_activations0);
}

        至于函数处理,我们可以不用void MX_X_CUBE_AI_Process(void);

 我们自己编写一个简单的接口,输入数据,然后返回数据。为什么前面要加上float强制转换呢?因为这个指针类型其实就是void*

float process_data_float(float input)
{
    *(float *)data_ins[0]=input;
    ai_run();
    return *(float *)data_outs[0];
}

        从这个函数可以清晰地看出,把接收的数据存放进data_ins[0]指向的缓冲区,然后调用ai_run进行AI推理,之后返回data_outs[0]得到推理的结果。无论是data_ins[0]还是data_outs[0]其实都是指针,所以前面要用“*”把指针指向的缓冲区的值取出来或者修改。

        接着,我们在某个按键处理中调用这个函数,输入的是从0累加到150的数据供它验证

            input = 0;
            for (int i = 0; i < 500; ++i)
            {
                result = process_data_float(input);
                printf("index:%f result:%f\r\n", input, result);
                input += 0.3;
            }

        按下按键后,串口打印的结果也符合推理结果,小于24的为1,大于24的为0。在24附近出现波动的原因也很简单,因为我提供的数据集里并没有出现浮点数,全是0-100的整数,并且模型训练轮次和数据量都比较小。

Tips:

        这三行代码我想了好久才想出来,前面定义data_ins和data_outs时不是有个int8_t,这个东西把我误导了许久,问通义,它说什么标准化、偏移量、量化之类的,总之告诉我输入数据和输出数据就是一个字节(int8_t)。后来我使用CubeMX另几个选项生成模板,并查看官方手册

        最终才确定转换的模型输入数据和输出数据确实是float32而不是量化后的int8_t,然后大胆尝试,强制把ai_input[0].data(也就是data_ins[0])转换为float32,才得到正确的结果

七、跨越

        AI模型转为C代码可以不使用CubeMX的这个插件,但那样占用可能会很高,对于STM32平台,无论是操作的便捷性还是针对STM32的性能优化,都是使用官方的比较合适。如果是其他单片机,那么直接使用由TensorFlow Lite训练的模型转换的C代码,占用也不会很高,因为它专门用于嵌入式平台。

        至于神经网络、CNN、LVTM、图像识别什么的,从0.9到,需要靠自己主动学习了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/922639.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2024最新YT-DLP使用demo网页端渲染

2024最新YT-DLP使用demo网页端渲染 前提摘要1.使用python的fastapi库和jinjia2库进行前端渲染2.代码实现1&#xff09;目录结构2&#xff09;代码style.cssindex.htmlresult.htmlmain.pyrun.py 3&#xff09;运行测试命令端运行 3.项目下载地址 前提摘要 2024最新python使用yt…

C0034.在Ubuntu中安装的Qt路径

Qt安装路径查询 在终端输入qmake -v如上中/usr/lib/x86_64-linux-gnu就是Qt的安装目录&#xff1b;

【STL】10.set与map的模拟实现

一、源码及框架分析 SGI-STL30版本源代码&#xff0c;map和set的源代码在map/set/stl_map.h/stl_set.h/stl_tree.h等及个头文件中。 map和set的实现结构框架核心部分截取出来如下&#xff1a; // set #ifndef __SGI_STL_INTERNAL_TREE_H #include <stl_tree.h> #endif …

AI模型---安装cuda与cuDNN

1.安装cuda 先打开cmd 输入nvidia-smi 查看显卡支持cuda对应的版本&#xff1a; 然后去英伟达官网下载cuda&#xff08;外网多刷几次&#xff09; https://developer.nvidia.com/cuda-toolkit-archive 注意对应版本 安装过程中如果显示如下图&#xff1a; 请安装visual Stu…

docker pull命令拉取镜像失败的解决方案

docker pull命令拉取镜像失败的解决方案 简介&#xff1a; docker pull命令拉取镜像失败的解决方案 docker pull命令拉取镜像失败的解决方案 一、执行docker pull命令&#xff0c;拉取镜像失败 报错信息&#xff1a;error pulling image configuration: Get https://produc…

Java开发经验——SpringRestTemplate常见错误

摘要 本文分析了在使用Spring框架的RestTemplate发送表单请求时遇到的常见错误。主要问题在于将表单参数错误地以JSON格式提交&#xff0c;导致服务器无法正确解析参数。文章提供了错误案例的分析&#xff0c;并提出了修正方法。 1. 表单参数类型是MultiValueMap RestControl…

《生成式 AI》课程 作业6 大语言模型(LLM)的训练微调 Fine Tuning -- part1

资料来自李宏毅老师《生成式 AI》课程&#xff0c;如有侵权请通知下线 Introduction to Generative AI 2024 Spring 该文档主要介绍了国立台湾大学&#xff08;NTU&#xff09;2024 年春季 “生成式人工智能&#xff08;GenAI&#xff09;” 课程的作业 5&#xff08;GenAI HW…

tcpdump抓包 wireShark

TCPdump抓包工具介绍 TCPdump&#xff0c;全称dump the traffic on anetwork&#xff0c;是一个运行在linux平台可以根据使用者需求对网络上传输的数据包进行捕获的抓包工具。 tcpdump可以支持的功能: 1、在Linux平台将网络中传输的数据包全部捕获过来进行分析 2、支持网络层…

利用Hooka开源的多种功能shellcode加载器实现快速免杀火绒,静态360+360杀毒,微步查杀1,vt查杀7(教程)

免责声明: 本文旨在提供有关特定漏洞的深入信息&#xff0c;帮助用户充分了解潜在的安全风险。发布此信息的目的在于提升网络安全意识和推动技术进步&#xff0c;未经授权访问系统、网络或应用程序&#xff0c;可能会导致法律责任或严重后果。因此&#xff0c;作者不对读者基于…

MyBatis中特殊SQL的执行

目录 1.模糊查询 2.批量删除 3.动态设置表名 4.添加功能获取自增的主键 1.模糊查询 List<User> getUserByLike(Param("username") String username); <select id"getUserByLike" resultType"com.atguigu.mybatis.pojo.User">&…

九、FOC原理详解

1、FOC简介 FOC&#xff08;field-oriented control&#xff09;为磁场定向控制&#xff0c;又称为矢量控制&#xff08;vectorcontrol&#xff09;&#xff0c;是目前无刷直流电机&#xff08;BLDC&#xff09;和永磁同步电机&#xff08;PMSM&#xff09;高效控制的最佳选择…

selinux及防火墙

selinux说明 SELinux 是 Security-Enhanced Linux 的缩写&#xff0c;意思是安全强化的 linux 。 SELinux 主要由美国国家安全局&#xff08; NSA &#xff09;开发&#xff0c;当初开发的目的是为了避免资源的误用。 httpd进程标签&#xff08;/usr/share/nginx/html &#…

Flink学习连载第二篇-使用flink编写WordCount(多种情况演示)

使用Flink编写代码&#xff0c;步骤非常固定&#xff0c;大概分为以下几步&#xff0c;只要牢牢抓住步骤&#xff0c;基本轻松拿下&#xff1a; 1. env-准备环境 2. source-加载数据 3. transformation-数据处理转换 4. sink-数据输出 5. execute-执行 DataStream API开发 //n…

解锁PPTist的全新体验:Windows系统环境下本地部署与远程访问

文章目录 前言1. 本地安装PPTist2. PPTist 使用介绍3. 安装Cpolar内网穿透4. 配置公网地址5. 配置固定公网地址 前言 在Windows系统环境中&#xff0c;如何本地部署开源在线演示文稿应用PPTist&#xff0c;并实现远程访问&#xff1f;本文将为您提供详细的部署和配置指南。 P…

《第十部分》1.STM32之通信接口《精讲》之IIC通信---介绍

经过近一周的USART学习&#xff0c;我深刻体会到通信对单片机的重要性。它就像人类的手脚和大脑&#xff0c;只有掌握了通信技术&#xff0c;单片机才能与外界交互&#xff0c;展现出丰富多彩的功能&#xff0c;变得更加强大和实用。 单片机最基础的“语言”是二进制。可惜&am…

URL在线编码解码- 加菲工具

URL在线编码解码 打开网站 加菲工具 选择“URL编码解码” 输入需要编码/解码的内容&#xff0c;点击“编码”/“解码”按钮 编码&#xff1a; 解码&#xff1a; 复制已经编码/解码后的内容。

【TEST】Apache JMeter + Influxdb + Grafana

介绍 使用Jmeter发起测试&#xff0c;测试结果存入Influxdb&#xff0c;Grafana展示你的测试结果。 环境 windows 10docker desktopJDK17 安装 Apache JMeter 访问官网&#xff08;Apache JMeter - Apache JMeter™&#xff09;下载JMeter&#xff08;目前最新版本5.6.3&a…

Linux笔记---进程:进程切换与O(1)调度算法

1. 补充概念 1.1 并行与并发 竞争性&#xff1a;系统进程数目众多&#xff0c;而CPU资源只有少量&#xff0c;甚至只有1个&#xff0c;所以进程之间是具有竞争属性的。为了高效完成任务&#xff0c;更合理竞争相关资源&#xff0c;便具有了优先级。独立性&#xff1a;多进程运…

C语言:深入理解指针

一.内存和地址 我们知道计算机上CPU&#xff08;中央处理器&#xff09;在处理数据的时候&#xff0c;需要的数据是在内存中读取的&#xff0c;处理后的数据也会放回内存中&#xff0c;那我们买电脑的时候&#xff0c;电脑上内存是 8GB/16GB/32GB 等&#xff0c;那这些内存空间…

mybatis学习(一)

声明&#xff1a;该内容来源于动力节点&#xff0c;本人在学习mybatis过程中参考该内容&#xff0c;并自己做了部分笔记&#xff0c;但个人觉得本人做的笔记不如动力节点做的好&#xff0c;故使用动力节点的笔记作为后续mybatis的复习。 一、MyBatis概述 1.1 框架 在文献中看…