神经网络(系统性学习二):单层神经网络(感知机)

此前篇章:

神经网络中常用的激活函数

神经网络(系统性学习一):入门篇


单层神经网络(又叫感知机)

单层网络是最简单的全连接神经网络,它仅有输入层和输出层,没有隐藏层。即,网络的所有输入直接影响到输出。

结构:输入层 → 输出层

特点

  • 只适用于线性可分问题。即,单层网络只能学习并解决线性可分的问题(例如,二维平面上的两类点可以通过一条直线分开)。

  • 单层感知机的输出由输入的加权和经过激活函数(如sigmoid)产生。

优点:结构简单,计算量较小。

缺点:无法解决非线性问题,如XOR问题(异或问题)。因为单层网络只能找到线性决策边界,无法处理更复杂的模式。


详细讲解

感知机最初设计用于二分类问题,用来判断输入样本属于正类还是负类。

1、模型结构:

感知机的输入:

  • 输入特征向量:\mathbf{x} = [x_1, x_2, \dots, x_n]^\top

  • 权重向量:\mathbf{w} = [w_1, w_2, \dots, w_n]^\top

  • 偏置:b

通常,我们还有一个0项权重,或者说常数项w_{0} ,即x_{0}=1对应的权重。这里我们忽略这一非重点的常数项。

加权和:感知机通过将输入特征与权重进行加权求和,再加上偏置项,得到一个总和值。

z = w_1 x_1 + w_2 x_2 + \cdots + w_n x_n + b

激活函数:通常是符号函数sign(z)

感知机模型的输出为:

2、基本步骤

感知机的学习过程是个迭代优化过程,通过不断调整权重和偏置,使模型能够正确分类训练数据。

1、初始化权重和偏置:

在训练开始前,感知机的权重 w1,w2,...,wn 和偏置 b 通常被初始化为小的随机值,或者初始化为零。学习率 η也是一个超参数,通常设置为一个小的正数,如 0.01 或 0.1。

2、对每一个样本计算加权和:

3、通过激活函数预测样本分类标签y_{\text{pred}}^{(i)}

4、误差计算与权重更新(反向传播):

对于每一个样本,如果预测分类结果正确,则不更新权重和偏置。否则利用预测误差更新权重和偏置:

这里的更新规则是通过误差(y^{(i)} - y_{\text{pred}}^{(i)})来调整权重和偏置。如果分类正确(即 y^{(i)} = y_{\text{pred}}^{(i)},则权重和偏置不发生变化。

5、迭代过程(epoch)

对于每个训练样本,逐个计算加权和、应用激活函数、更新权重和偏置。每一轮迭代,会对所有训练样本进行一次更新。通常需要多轮迭代才能训练出一个合适的模型。

停止条件为:

  • 达到最大迭代次数;

  • 在某一轮迭代中没有发生任何权重更新(即所以样本都分类正确)。


具体例子

假设我们有以下一个简单的训练数据集。

初始化时设定权重 w1=0.1,w2=0.2,偏置 b=0,学习率 η=0.01。

第一轮迭代:

对于样本1,计算加权和:z=0.1×2+0.2×3+0=0.8。 激活函数输出 y_{\text{pred}} = 1,与真实标签一致,因此不更新权重。

对于样本2,计算加权和:z=0.1×1+0.2×1+0=0.3。激活函数输出 y_{\text{pred}} = 1,但真实标签是 -1,所以发生分类错误。更新权重和偏置:

w_1 \leftarrow 0.1 + 0.01 \times (-1 - 1) \times 1 = 0.08

w_2 \leftarrow 0.2 + 0.01 \times (-1 - 1) \times 1 = 0.18

b \leftarrow 0 + 0.01 \times (-1 - 1) = -0.02

对于样本3,计算加权和:z=0.08×3+0.18×1−0.02=0.4。激活函数输出 y_{\text{pred}} = 1,与真实标签一致,因此不更新权重。

第二轮迭代:

...

一直迭代

直到所有样本分类正确或达到停止条件,得到了我们要的 w 和 b

#  若文章对大噶有帮助的话,点个赞支持一下叭!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/922599.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

H.265流媒体播放器EasyPlayer.js播放器提示MSE不支持H.265解码可能的原因

随着人工智能和机器学习技术的应用,流媒体播放器将变得更加智能,能够根据用户行为和偏好提供个性化的内容推荐。总体而言,流媒体播放器的未来发展将更加注重技术创新和用户互动,以适应不断变化的市场需求和技术进步。 提示MSE不支…

MySQL原理简介—6.简单的生产优化案例

大纲 1.MySQL日志的顺序写和数据文件的随机读指标 2.Linux存储系统软件层原理及IO调度优化原理 3.数据库服务器使用的RAID存储架构介绍 4.数据库Too many connections故障定位 1.MySQL日志的顺序写和数据文件的随机读指标 (1)磁盘随机读操作 (2)磁盘顺序写操作 (1)磁盘随…

svn 崩溃、 cleanup失败 怎么办

在使用svn的过程中,可能出现整个svn崩溃, 例如cleanup 失败的情况,类似于 这时可以下载本贴资源文件并解压。 或者直接访问网站 SQLite Download Page 进行下载 解压后得到 sqlite3.exe 放到发生问题的svn根目录的.svn路径下 右键呼出pow…

前后端分离,解决vue+axios跨域和proxyTable不生效等问题

看到我这篇文章前可能你以前看过很多类似的文章。至少我是这样的,因为一直没有很好的解决问题。 正文 当我们通过webstorm等IDE开发工具启动项目的时候,通过命令控制台可以观察到启动项目的命令 如下: webpack-dev-server --inline --prog…

在win10环境部署opengauss数据库(包含各种可能遇到的问题解决)

适用于windows环境下通过docker desktop实现opengauss部署,请审题。 文章目录 前言一、部署适合deskdocker的环境二、安装opengauss数据库1.配置docker镜像源2.拉取镜像源 总结 前言 注意事项:后面docker拉取镜像源最好电脑有科学上网工具如果没有科学上…

Java开发经验——Spring Test 常见错误

摘要 本文详细介绍了Java开发中Spring Test的常见错误和解决方案。文章首先概述了Spring中进行单元测试的多种方法,包括使用JUnit和Spring Boot Test进行集成测试,以及Mockito进行单元测试。接着,文章分析了Spring资源文件扫描不到的问题&am…

2024年亚太地区数学建模大赛D题-探索量子加速人工智能的前沿领域

量子计算在解决复杂问题和处理大规模数据集方面具有巨大的潜力,远远超过了经典计算机的能力。当与人工智能(AI)集成时,量子计算可以带来革命性的突破。它的并行处理能力能够在更短的时间内解决更复杂的问题,这对优化和…

基于 RBF 神经网络整定的 PID 控制

基于 RBF 神经网络整定的 PID 控制 是结合了传统 PID 控制和 RBF(径向基函数)神经网络的自适应控制方法。在这种方法中,RBF 神经网络用于自适应地调整 PID 控制器的增益(比例增益 KpK_pKp​,积分增益 KiK_iKi​ 和微分…

空间注意力网络的性能优化与多维评估

在本文中,首先分析空间注意力网络(Spatial Attention Neural Network)在五个不同数据集上的训练结果。这些数据集包括Daily_and_Sports_Activities、WISDM、UCI-HAR、PAMAP2和OPPORTUNITY。通过对比这些结果,我们可以深入理解空间…

Linux——1_系统的延迟任务及定时任务

系统的延迟任务及定时任务 在系统中我们的维护工作大多数时在服务器行对闲置时进行 我们需要用延迟任务来解决自动进行的一次性的维护 延迟任务时一次性的,不会重复执行 当延迟任务产生输出后,这些输出会以邮件的形式发送给延迟任务发起者 在RHEL9中…

【数据结构】—— 线索二叉树

引入 我们现在提倡节约型杜会, 一切都应该节约为本。对待我们的程序当然也不例外,能不浪费的时间或空间,都应该考虑节省。我们再观察团下图的二叉树(链式存储结构),会发现指针域并不是都充分的利用了,有许…

NVR管理平台EasyNVR多个NVR同时管理:全方位安防监控视频融合云平台方案

EasyNVR是基于端-边-云一体化架构的安防监控视频融合云平台,具有简单轻量的部署方式与多样的功能,支持多种协议(如GB28181、RTSP、Onvif、RTMP)和设备类型(IPC、NVR等),提供视频直播、录像、回放…

虚幻引擎---初识篇

一、学习途径 虚幻引擎官方文档:https://dev.epicgames.com/documentation/zh-cn/unreal-engine/unreal-engine-5-5-documentation虚幻引擎在线学习平台:https://dev.epicgames.com/community/unreal-engine/learning哔哩哔哩:https://www.b…

汽车HiL测试:利用TS-GNSS模拟器掌握硬件性能的仿真艺术

一、汽车HiL测试的概念 硬件在环(Hardware-in-the-Loop,简称HiL)仿真测试,是模型基于设计(Model-Based Design,简称MBD)验证流程中的一个关键环节。该步骤至关重要,因为它整合了实际…

C++编程库与框架实战——sqlite3数据库

一,SQLite数据库简介 SQLite是可以实现类似于关系型数据库中各种操作的事务性SQL数据库引擎。 SQLite可以为应用程序提供存储于本地的嵌入式数据库,帮助应用程序实现轻量级的数据存储。 SQLite是一个库文件,并不是单独的进程,它可以静态或动态链接到C++应用程序中,然后…

STM32F10x 定时器

使用定时器实现:B5 E5的开关 添加相关的.h路径文件 添加相关的.c配置文件 led.h文件 用于声明LED函数 #ifndef __LED_H //没有定义__LED_H #define __LED_H //就定义__LED_H #define LED1_ON GPIO_ResetBits(GPIOB,GPIO_Pin_5) #defi…

PyQt6+pyqtgraph折线图绘制显示

1、实现效果 2、环境: 确认已经安装pyqtgraph的模块,如果没有安装,使用命令安装: pip install pyqtgraph 3、代码实现: 绘制折线函数: import sys import random from PySide6.QtWidgets import QAppl…

Linux---ps命令

​​​​​​Linux ps 命令 | 菜鸟教程 (runoob.com) process status 用于显示进程的状态 USER: 用户名,运行此进程的用户名。PID: 进程ID(Process ID),每个进程的唯一标识号%CPU: 进程当前使用的CPU百分比%MEM: 进程当前使用的…

高新技术行业中的知识管理:关键性、挑战、策略及工具应用

知识管理的关键性 在瞬息万变的信息时代,知识已成为高新技术行业的核心竞争要素。知识管理,这一旨在高效组织、整合并应用企业内外部知识资源的管理策略,对于推动高新技术企业的持续创新与发展至关重要。它不仅能够激发研发团队的创造力&…

IDEA 2024安装指南(含安装包以及使用说明 cannot collect jvm options 问题 四)

汉化 setting 中选择插件 完成 安装出现问题 1.可能是因为之前下载过的idea,找到连接中 文件,卸载即可。