YOLOv11融合[ECCV 2018]RCAN中的RCAB模块及相关改进思路


YOLOv11v10v8使用教程:  YOLOv11入门到入土使用教程

YOLOv11改进汇总贴:YOLOv11及自研模型更新汇总 


《Image Super-Resolution Using Very Deep Residual Channel Attention Networks》

一、 模块介绍

        论文链接:https://arxiv.org/abs/1807.02758

        代码链接:https://github.com/yulunzhang/RCAN

论文速览:

       卷积神经网络 (CNN) 深度对于图像超分辨率 (SR) 至关重要。但是,我们观察到图像 SR 的更深网络更难训练。低分辨率输入和特征包含丰富的低频信息,这些信息在各个通道中被平等对待,因此阻碍了 CNN 的表示能力。为了解决这些问题,我们提出了非常深的残差通道注意力网络 (RCAN)。具体来说,我们提出了一种残差中的残差 (RIR) 结构来形成非常深的网络,它由几个具有长跳跃连接的残差组组成。每个残差组都包含一些具有短 skip 连接的残差块。同时,RIR 允许通过多个 skip 连接绕过丰富的低频信息,使主网专注于学习高频信息。此外,我们提出了一种通道注意力机制,通过考虑通道之间的相互依赖关系来自适应地重新缩放通道特征。广泛的实验表明,与最先进的方法相比,我们的 RCAN 实现了更好的准确性和视觉改进。

总结:RCAN中的RCAB模块可用于其他深度学习任务。


⭐⭐本文二创模块仅更新于付费群中,往期免费教程可看下方链接⭐⭐

YOLOv11及自研模型更新汇总(含免费教程)文章浏览阅读366次,点赞3次,收藏4次。群文件2024/11/08日更新。,群文件2024/11/08日更新。_yolo11部署自己的数据集https://xy2668825911.blog.csdn.net/article/details/143633356

⭐⭐付费项目简介:融合上百种顶刊顶会模块的YOLO项目仅119(赠百种改进的v9),此外含自研模型与本文模块融合进行二创三创,最快1-2周完成小论文改进实验,代码每周更新(上周更新超20+二创模块),欢迎QQ:2668825911(或点击下方小卡片扫二维码)加我了解。⭐⭐

⭐⭐本项目并非简单的模块插入,平均每个文章对应4-6个二创或自研融合模块,有效果即可写论文或三创。本文项目使用ultralytics框架,兼容YOLOv3\5\6\8\9\10\world与RT-DETR。⭐⭐

        已进群小伙伴可以先用下文二创及自研模块在自己的数据集上测试,有效果再进行模块结构分析或继续改进。


二、二创融合模块

2.1 相关二创模块及所需参数

        该模块可如图加入到C2f、C3、C3K2与自研等模块中,代码见群文件,所需参数如下。

C2f-变式模块 所需参数:(c1, c2, n, shortcut, g, e)

C3-变式模块 所需参数:(c1, c2, n, shortcut, g, e)

C3k2-变式模块 所需参数:(c1, c2, n, c3k, e, g, shortcut)

RCRep2A及变式模块 所需参数:(c1, c2, shortcut, e)

2.2更改yaml文件 (以自研模型为例)

yam文件解读:YOLO系列 “.yaml“文件解读_yolo yaml文件-CSDN博客

       打开更改ultralytics/cfg/models/11路径下的YOLOv11.yaml文件,替换原有模块。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 377 layers, 2,249,525 parameters, 2,249,509 gradients, 8.7 GFLOPs/258 layers, 2,219,405 parameters, 0 gradients, 8.5 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 377 layers, 8,082,389 parameters, 8,082,373 gradients, 29.8 GFLOPs/258 layers, 7,972,885 parameters, 0 gradients, 29.2 GFLOPs
  m: [0.50, 1.00, 512] # summary:  377 layers, 20,370,221 parameters, 20,370,205 gradients, 103.0 GFLOPs/258 layers, 20,153,773 parameters, 0 gradients, 101.2 GFLOPs
  l: [1.00, 1.00, 512] # summary: 521 layers, 23,648,717 parameters, 23,648,701 gradients, 124.5 GFLOPs/330 layers, 23,226,989 parameters, 0 gradients, 121.2 GFLOPs
  x: [1.00, 1.50, 512] # summary: 521 layers, 53,125,237 parameters, 53,125,221 gradients, 278.9 GFLOPs/330 layers, 52,191,589 parameters, 0 gradients, 272.1 GFLOPs

#  n: [0.33, 0.25, 1024]
#  s: [0.50, 0.50, 1024]
#  m: [0.67, 0.75, 768]
#  l: [1.00, 1.00, 512]
#  x: [1.00, 1.25, 512]
# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, RCRep2A_RCAB, [128, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 4, RCRep2A, [256, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 4, RCRep2A, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, RCRep2A, [1024, True]]
  - [-1, 1, SPPF_WD, [1024, 7]] # 9

# YOLO11n head
head:
  - [[3, 5, 7], 1, align_3In, [256, 1]] # 10
  - [[4, 6, 9], 1, align_3In, [256, 1]] # 11

  - [[-1, -2], 1, Concat, [1]] #12  cat

  - [-1, 1, RepVGGBlocks, []] #13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]] #14
  - [[-1, 4], 1, Concat, [1]] #15 cat

  - [-1, 1, Conv, [256, 3]] # 16
  - [13, 1, Conv, [512, 3]] #17
  - [13, 1, Conv, [1024, 3, 2]] #18

  - [[16, 17, 18], 1, Detect, [nc]] # Detect(P3, P4, P5)



# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐

 2.3 修改train.py文件

       创建Train脚本用于训练。

from ultralytics.models import YOLO
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'

if __name__ == '__main__':
    model = YOLO(model='ultralytics/cfg/models/xy_YOLO/xy_yolov1-ConvNeXt.yaml')
    # model = YOLO(model='ultralytics/cfg/models/11/yolo11l.yaml')
    model.train(data='./datasets/data.yaml', epochs=1, batch=1, device='0', imgsz=320, workers=1, cache=False,
                amp=True, mosaic=False, project='run/train', name='exp',)

         在train.py脚本中填入修改好的yaml路径,运行即可训练,数据集创建教程见下方链接。

YOLOv11入门到入土使用教程(含结构图)_yolov11使用教程-CSDN博客


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/922363.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

linux ubuntu的脚本知

目录 一、变量的引用 二、判断指定的文件是否存在 三、判断目录是否存在 四、判断最近一次命令执行是否成功 五、一些比较符号 六、"文件"的读取和写入 七、echo打印输出 八、ubuntu切换到root用户 N、其它可以参考的网址 脚本功能强大,用起来也…

前端:JavaScript (学习笔记)【2】

目录 一,数组的使用 1,数组的创建 [ ] 2,数组的元素和长度 3,数组的遍历方式 4,数组的常用方法 二,JavaScript中的对象 1,常用对象 (1)String和java中的Stri…

【Git】工作区、暂存区和版本库

目录 一、基本概念: 关系图: 1. 工作区(Working Directory) $ 1.1 工作区功能 $ 1.2 工作区特点 2. 暂存区(Staging Area) $ 2.1 暂存区功能 $ 2.2 暂存区特点 $ 2.3 常用命令 3. 版本库&#xff08…

【Linux | 计网】TCP协议详解:从定义到连接管理机制

目录 1.TCP协议的定义: 2.TCP 协议段格式 3.TCP两种通信方式 4.确认应答(ACK)机制 解决“后发先至”问题 5.超时重传机制 那么, 超时的时间如何确定? 6.连接管理机制: 6.1.三次握手: 为什么需要3次握手,一次两次不行吗…

Springboot系列之:创建Springboot项目,Springboot整合MyBatis-plus

Springboot系列之:创建Springboot项目,Springboot整合MyBatis-plus 一、快速创建Spring boot项目二、项目完整目录三、pom.xml四、application.yaml五、实体类六、mapper七、IService接口八、Service实现类九、配置类十、枚举十一、增删改查测试类十二、…

java基础面试题笔记(基础篇)

网上始终找不到令自己满意的面试题,所以我打算自己整理面试题,从简单的到难的,尽量简单准确描述回答降低大家理解和背的难度,有错误或者有更好的回答请在评论回复我,感谢大家。 什么是java? 回答&#xff…

编译 LLVM 源码,使用 Clion 调试 clang

版权归作者所有,如有转发,请注明文章出处:https://cyrus-studio.github.io/blog/ 1. LLVM 简介 LLVM 是一个开源的编译器基础架构,最初由 Chris Lattner 于 2000 年在伊利诺伊大学开发,后来成为一个广泛应用于编译器和…

[代码随想录打卡Day22] 理论基础 77. 组合 216.组合总和III 17.电话号码的字母组合

理论基础 有递归就有回溯。回溯搜索是一种纯暴力搜索算法。我们一层一层递归到最底层收获结果,比如下面我们最后一层1操作之后,我们只有撤销这个操作回退到上一个节点才能遍历该层的其他节点,这个回退撤销操作就是回溯。 回溯法&#xff0…

大模型工程化部署:使用FastChat部署基于OpenAI API兼容大模型服务

FastChat是加州大学伯克利分校LM-SYS发布的一个用于训练、服务和评估基于大型语言模型的聊天机器人的开放平台。 项目地址:https://github.com/lm-sys/FastChat.git 其核心功能包括: 最先进 LLM 模型的权重、训练代码和评估代码。 带有 WebUI 和与 Op…

102.【C语言】数据结构之用堆对数组排序

0.前置知识 向上调整: 向下调整: 1.对一个无序的数组排升序和降序 排升序问题 建大根堆还是小根堆? 错误想法 由小根堆的定义:树中所有的父节点的值都小于或等于孩子节点的值,这样排出来的数组时升序的,建小根堆调用向上调整函数即可(把画圈的地方改成<即可) arr未…

彻底理解微服务的作用和解决方案

一.微服务有什么好处&#xff1f; 微服务优点很多&#xff0c;但是我们通常说一个东西好肯定会跟另一个东西比较&#xff0c;通常说微服务好会和单体项目进行比较&#xff0c;通常情况下微服务都是从单体项目拆分而来的&#xff0c;但是对于有些大型公司&#xff0c;不差钱&…

Harbor安装、HTTPS配置、修改端口后不可访问?

Harbor安装、HTTPS配置、修改端口后不可访问&#xff1f; 大家好&#xff0c;我是秋意零。今天分享Harbor相关内容&#xff0c;安装部分可完全参考官方文档&#xff0c;写的也比较详细。 安装Harbor 官方文档&#xff1a;https://goharbor.io/docs/2.12.0/install-config/ …

表单校验规则

这里简单记录下vue使用表单时候&#xff0c;给表单添加校验规则&#xff0c;直接上代码 <script setup>import { ref } from vue// 定义表单对象const form ref({account: ,password: ,agree: true})// 定义表单验证规则const rules {account: [{required: true, mess…

spf算法、三类LSA、区间防环路机制/规则、虚连接

1.构建spf树&#xff1a; 路由器将自己作为最短路经树的树根根据Router-LSA和Network-LSA中的拓扑信息,依次将Cost值最小的路由器添加到SPF树中。路由器以Router ID或者DR标识。广播网络中DR和其所连接路由器的Cost值为0。SPF树中只有单向的最短路径,保证了OSPF区域内路由计管不…

电子电气架构 -- ASIL D安全实现策略

我是穿拖鞋的汉子&#xff0c;魔都中坚持长期主义的汽车电子工程师。 老规矩&#xff0c;分享一段喜欢的文字&#xff0c;避免自己成为高知识低文化的工程师&#xff1a; 所有人的看法和评价都是暂时的&#xff0c;只有自己的经历是伴随一生的&#xff0c;几乎所有的担忧和畏惧…

【Unity ShaderGraph实现流体效果之Function入门】

Unity ShaderGraph实现流体效果之Node入门&#xff08;一&#xff09; 前言Shader Graph NodePosition NodeSplit NodeSubtract NodeBranch Node 总结 前言 Unity 提供的Shader Graph在很大程度上简化了开发者对于编写Shader的工作&#xff0c;只需要拖拽即可完成一个视觉效果…

uniop触摸屏维修eTOP40系列ETOP40-0050

在现代化的工业与商业环境中&#xff0c;触摸屏设备已成为不可或缺的人机交互界面。UNIOP&#xff0c;作为一个知名的触摸屏品牌&#xff0c;以其高性能、稳定性和用户友好性&#xff0c;广泛应用于各种自动化控制系统、自助服务终端以及高端展示系统中。然而&#xff0c;即便如…

SpringMVC——简介及入门

SpringMVC简介 看到SpringMVC这个名字&#xff0c;我们会发现其中包含Spring&#xff0c;那么SpringMVC和Spring之间有怎样的关系呢&#xff1f; SpringMVC隶属于Spring&#xff0c;是Spring技术中的一部分。 那么SpringMVC是用来做什么的呢&#xff1f; 回想web阶段&#x…

小白学多线程(持续更新中)

1.线程池技术 1.JDK中的线程池 JDK中创建线程池有一个最全的构造方法&#xff0c;里面七个参数如上所示。 执行流程分析&#xff1a; 模拟条件&#xff1a;10个核心线程数&#xff0c;200个最大线程数&#xff0c;阻塞队列大小为100。 当有小于十个任务要处理时&#xff0c…

UNity将脚本中的文本提示显示在编辑器中

正常情况下我们创建了一个脚本然后挂载到一个对象上只能看到这样的一个面板 如果我们想在编辑器里面添加一段提示就可以这样做 [Header("玩家的基本信息")] 然后就能在编辑器窗口中看到添加的提示了 注意&#xff1a;当参数少的时候确实没必要这样做&#xff0c;但…