网络爬虫——综合实战项目:多平台房源信息采集与分析系统

1. 项目背景与目标

1.1 项目背景

随着房产市场的快速发展,各大平台上充斥着大量房源信息。为了帮助用户快速掌握市场动态,需要通过爬虫技术自动采集多平台数据,清洗后进行存储和分析,为用户提供有价值的洞察。开发者通过这一实战项目可以深入学习从爬虫构建到数据分析的完整流程。

1.2 项目目标

通过开发一个多平台房源爬取与分析系统,涵盖以下核心功能:

  1. 数据采集: 实现对多个房产网站(如链家、安居客)的房源数据采集。
  2. 动态页面处理: 支持 JavaScript 渲染的动态内容抓取。
  3. 数据清洗: 实现数据去重、缺失值处理与字段标准化。
  4. 数据存储: 采用高效存储方案(SQLite 或 MongoDB)。
  5. 数据分析与可视化: 提供房源价格分布图、趋势分析与地理热力图。

2. 系统架构与功能模块

2.1 系统架构

整体架构设计为模块化,便于扩展和维护。

模块功能描述
数据采集模块通过 HTTP 请求或 Selenium 抓取房源数据,支持多线程并发。
动态页面处理模块解决动态加载问题,支持 Ajax 请求捕获与模拟。
数据清洗模块去重、格式化字段、处理缺失值,确保数据一致性与完整性。
数据存储模块使用 SQLite 进行本地存储,或 MongoDB 进行 NoSQL 存储。
数据分析模块提供价格分布、趋势分析与地理热力图等数据分析功能。
可视化模块利用 Matplotlib、Seaborn 和 Folium 生成图表与地图。

2.2 系统工作流程

  1. 用户输入:
    • 指定目标城市、房产平台、数据类型。
  2. 数据采集:
    • 模拟请求,解析页面,抓取房源数据。
  3. 数据处理:
    • 数据清洗与规范化存储。
  4. 分析与可视化:
    • 输出图表、生成报告。

3. 数据采集模块

3.1 动态网页爬取:Selenium + BeautifulSoup

动态页面通常通过 JavaScript 渲染数据,需结合 Selenium 模拟浏览器操作。

示例代码:抓取动态加载房源数据
from selenium import webdriver
from selenium.webdriver.common.by import By
from bs4 import BeautifulSoup

# 初始化浏览器
options = webdriver.ChromeOptions()
options.add_argument('--headless')
driver = webdriver.Chrome(options=options)

# 目标页面
url = "https://example.com/houses"
driver.get(url)

# 等待数据加载并获取 HTML
driver.implicitly_wait(10)
html = driver.page_source

# 使用 BeautifulSoup 解析
soup = BeautifulSoup(html, 'html.parser')
houses = soup.find_all('div', class_='house-item')

for house in houses:
    title = house.find('h2', class_='title').text
    price = house.find('span', class_='price').text
    print(f"标题: {title}, 价格: {price}")

driver.quit()
优化点:
  1. 动态加载检测: 使用 Selenium 的 WebDriverWait 捕获特定元素,避免抓取不完整数据。
  2. 多线程或异步爬取: 使用 asyncio 提高爬取效率。

3.2 分析 API 接口

很多网站数据通过 API 提供,分析请求与响应是高效爬取的关键。

工具:Postman
  1. 捕获请求: 使用浏览器开发者工具(Network 面板)查看 Ajax 请求。
  2. 分析参数: 识别动态参数(如时间戳、签名)。
  3. 模拟请求: 利用 Python 的 requests 模块。
示例代码:模拟 API 请求
import requests

url = "https://example.com/api/houses"
headers = {
    "User-Agent": "Mozilla/5.0",
    "Authorization": "Bearer <token>"
}
params = {
    "city": "shanghai",
    "page": 1
}

response = requests.get(url, headers=headers, params=params)
if response.status_code == 200:
    data = response.json()
    for house in data['results']:
        print(house['title'], house['price'])

4. 数据清洗模块

4.1 去重与缺失值处理

数据清洗是确保数据质量的关键步骤,常见清洗操作包括去重、字段转换和处理空值。

Pandas 实现清洗
import pandas as pd

# 示例数据
data = [
    {"title": "House A", "price": 5000, "area": None},
    {"title": "House A", "price": 5000, "area": None},
    {"title": "House B", "price": 7000, "area": 85}
]

df = pd.DataFrame(data)

# 去重
df = df.drop_duplicates()

# 缺失值处理
df["area"].fillna(df["area"].mean(), inplace=True)

print(df)

4.2 数据标准化

统一格式,如价格单位(元/平米)、面积单位(平方米)。

# 价格单位转换
df["price_per_sqm"] = df["price"] / df["area"]

5. 数据存储模块

5.1 SQLite 数据存储

适用于小规模本地存储。

import sqlite3

conn = sqlite3.connect('houses.db')
cursor = conn.cursor()

# 创建表
cursor.execute('''CREATE TABLE IF NOT EXISTS houses (
                    id INTEGER PRIMARY KEY AUTOINCREMENT,
                    title TEXT,
                    price REAL,
                    area REAL,
                    address TEXT)''')

# 插入数据
cursor.execute('INSERT INTO houses (title, price, area, address) VALUES (?, ?, ?, ?)',
               ("House A", 5000, 100, "Shanghai"))

conn.commit()
conn.close()

5.2 MongoDB 数据存储

适用于大规模非结构化数据存储。

from pymongo import MongoClient

client = MongoClient("mongodb://localhost:27017/")
db = client["real_estate"]
collection = db["houses"]

# 插入数据
house = {"title": "House B", "price": 7000, "area": 85, "address": "Beijing"}
collection.insert_one(house)

6. 数据分析与可视化

6.1 价格分布分析

利用 Matplotlib 绘制价格分布直方图。

import matplotlib.pyplot as plt

prices = [5000, 7000, 5500, 6200, 7200]
plt.hist(prices, bins=5, color='blue', edgecolor='black')
plt.title("房源价格分布")
plt.xlabel("价格")
plt.ylabel("数量")
plt.show()

6.2 热力图

使用 Folium 生成房源位置热力图。

import folium
from folium.plugins import HeatMap

data = [
    [39.9042, 116.4074, 0.8],  # 北京
    [31.2304, 121.4737, 0.9],  # 上海
    [23.1291, 113.2644, 0.7]   # 广州
]

map_ = folium.Map(location=[35, 110], zoom_start=5)
HeatMap(data).add_to(map_)

map_.save("heatmap.html")

7. 小结

本综合实战项目从爬虫基础到数据清洗与分析,覆盖完整开发流程。开发者通过此项目能掌握爬取动态网页、解析 API 接口、存储与分析数据的技能,为实际开发奠定坚实基础。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/921568.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据结构-7.Java. 对象的比较

本篇博客给大家带来的是java对象的比较的知识点, 其中包括 用户自定义类型比较, PriorityQueue的比较方式, 三种比较方法...... 文章专栏: Java-数据结构 若有问题 评论区见 欢迎大家点赞 评论 收藏 分享 如果你不知道分享给谁,那就分享给薯条. 你们的支持是我不断创作的动力 .…

NVR录像机汇聚管理EasyNVR多品牌NVR管理工具/设备如何使用Docker运行?

在当今的安防监控领域&#xff0c;随着视频监控技术的不断发展和应用范围的扩大&#xff0c;如何高效、稳定地管理并分发视频流资源成为了行业内外关注的焦点。EasyNVR作为一款功能强大的多品牌NVR管理工具/设备&#xff0c;凭借其灵活的部署方式和卓越的性能&#xff0c;正在引…

LSTM原理解读与实战

在RNN详解及其实战中&#xff0c;简单讨论了为什么需要RNN这类模型、RNN的具体思路、RNN的简单实现等问题。同时&#xff0c;在文章结尾部分我们提到了RNN存在的梯度消失问题&#xff0c;及之后的一个解决方案&#xff1a;LSTM。因此&#xff0c;本篇文章主要结构如下&#xff…

Springboot之登录模块探索(含Token,验证码,网络安全等知识)

简介 登录模块很简单&#xff0c;前端发送账号密码的表单&#xff0c;后端接收验证后即可~ 淦&#xff01;可是我想多了&#xff0c;于是有了以下几个问题&#xff08;里面还包含网络安全问题&#xff09;&#xff1a; 1.登录时的验证码 2.自动登录的实现 3.怎么维护前后端…

使用Element UI实现前端分页,前端搜索,及el-table表格跨页选择数据,切换分页保留分页数据,限制多选数量

文章目录 一、前端分页1、模板部分 (\<template>)2、数据部分 (data)3、计算属性 (computed)4、方法 (methods) 二、前端搜索1、模板部分 (\<template>)2、数据部分 (data)3、计算属性 (computed)4、方法 (methods) 三、跨页选择1、模板部分 (\<template>)2、…

VMware Workstation 17.6.1

概述 目前 VMware Workstation Pro 发布了最新版 v17.6.1&#xff1a; 本月11号官宣&#xff1a;针对所有人免费提供&#xff0c;包括商业、教育和个人用户。 使用说明 软件安装 获取安装包后&#xff0c;双击默认安装即可&#xff1a; 一路单击下一步按钮&#xff1a; 等待…

探索PyMuPDF:Python中的强大PDF处理库

文章目录 **探索PyMuPDF&#xff1a;Python中的强大PDF处理库**第一部分&#xff1a;背景第二部分&#xff1a;PyMuPDF是什么&#xff1f;第三部分&#xff1a;如何安装这个库&#xff1f;第四部分&#xff1a;至少5个简单的库函数使用方法第五部分&#xff1a;结合至少3个场景…

go语言range的高级用法-使用range来接收通道里面的数据

在 Go 语言中&#xff0c;可以使用 for ... range 循环来遍历通道&#xff08;channel&#xff09;。for ... range 循环会一直从通道中接收值&#xff0c;直到通道关闭并且所有值都被接收完毕。 使用 for ... range 遍历通道 示例代码 下面是一个使用 for ... range 遍历通…

14.C++STL1(STL简介)

⭐本篇重点&#xff1a;STL简介 ⭐本篇代码&#xff1a;c学习/7.STL简介/07.STL简介 橘子真甜/c-learning-of-yzc - 码云 - 开源中国 (gitee.com) 目录 一. STL六大组件简介 二. STL常见算法的简易使用 2.1 swap ​2.2 sort 2.3 binary_search lower_bound up_bound 三…

5G CPE与4G CPE的主要区别有哪些

什么是CPE&#xff1f; CPE是Customer Premise Equipment&#xff08;客户前置设备&#xff09;的缩写&#xff0c;也可称为Customer-side Equipment、End-user Equipment或On-premises Equipment。CPE通常指的是位于用户或客户处的网络设备或终端设备&#xff0c;用于连接用户…

智能安全配电装置在高校实验室中的应用

​ 摘要&#xff1a;高校实验室是科研人员进行科学研究和实验的场所&#xff0c;通常会涉及到大量的仪器设备和电气设备。电气设备的使用不当或者维护不周可能会引发火灾事故。本文将以一起实验室电气火灾事故为例&#xff0c;对事故原因、危害程度以及防范措施进行分析和总结…

深入理解 LMS 算法:自适应滤波与回声消除

深入理解 LMS 算法&#xff1a;自适应滤波与回声消除 在信号处理领域&#xff0c;自适应滤波是一种重要的技术&#xff0c;广泛应用于噪声消除、回声消除和信号恢复等任务。LMS&#xff08;Least Mean Squares&#xff09;算法是实现自适应滤波的经典方法之一。本文将详细介绍…

如何在分布式环境中实现高可靠性分布式锁

目录 一、简单了解分布式锁 &#xff08;一&#xff09;分布式锁&#xff1a;应对分布式环境的同步挑战 &#xff08;二&#xff09;分布式锁的实现方式 &#xff08;三&#xff09;分布式锁的使用场景 &#xff08;四&#xff09;分布式锁需满足的特点 二、Redis 实现分…

socket连接封装

效果&#xff1a; class websocketMessage {constructor(params) {this.params params; // 传入的参数this.socket null;this.lockReconnect false; // 重连的锁this.socketTimer null; // 心跳this.lockTimer null; // 重连this.timeout 3000; // 发送消息this.callbac…

基于RM开发板32学习日记

环境配置 芯片选型 STM32F407IGH6 配置时钟 12 168 模块 Led 引脚选择 比对原理图 可查看 设置为Out_Put输出 三色同时点亮 合为白色光 HAL_GPIO_WritePin(LED_R_GPIO_Port, LED_R_Pin, GPIO_PIN_SET);HAL_GPIO_WritePin(GPIOH, GPIO_PIN_10, GPIO_PIN_SET);GPIOH->ODR…

MacOS下的Opencv3.4.16的编译

前言 MacOS下编译opencv还是有点麻烦的。 1、Opencv3.4.16的下载 注意&#xff0c;我们使用的是Mac&#xff0c;所以ios pack并不能使用。 如何嫌官网上下载比较慢的话&#xff0c;可以考虑在csdn网站上下载&#xff0c;应该也是可以找到的。 2、cmake的下载 官网的链接&…

刷题笔记15

问题描述 小M和小F在玩飞行棋。游戏结束后&#xff0c;他们需要将桌上的飞行棋棋子分组整理好。现在有 N 个棋子&#xff0c;每个棋子上有一个数字序号。小M的目标是将这些棋子分成 M 组&#xff0c;每组恰好5个&#xff0c;并且组内棋子的序号相同。小M希望知道是否可以按照这…

stm32 指定变量存储地址

uint8_t array[10] attribute((at(0x20000000))) 当你使用 attribute((at(地址))) 强制将变量放置在特定地址时&#xff0c;编译器和链接器通常不会自动调整其他变量的地址以避免冲突。这意味着&#xff0c;如果指定的地址已经被其他变量占用&#xff0c;就会发生冲突。 如果…

性能超越Spark 13.3 倍,比某MPP整体快数十秒 | 多项性能指标数倍于主流开源引擎 | 云器科技发布性能测试报告

云器Lakehouse正式发布性能测试报告 &#x1f3c5;离线批处理&#xff1a;在复杂批处理任务中&#xff0c;云器Lakehouse相较Spark表现出13.31倍性能提升。 &#x1f3c5;即席查询&#xff1a;在交互式分析场景下&#xff0c;云器Lakehouse相较Trino表现出9.84倍性能提升。 &am…

NIST 发布后量子密码学转型战略草案

美国国家标准与技术研究所 (NIST) 发布了其初步战略草案&#xff0c;即内部报告 (IR) 8547&#xff0c;标题为“向后量子密码标准过渡”。 该草案概述了 NIST 从当前易受量子计算攻击的加密算法迁移到抗量子替代算法的战略。该草案于 2024 年 11 月 12 日发布&#xff0c;开放…