提取图片高频信息
示例-输入:
示例-输出:
代码实现:
import cv2
import numpy as np
def edge_calc(image):
src = cv2.GaussianBlur(image, (3, 3), 0)
ddepth = cv2.CV_16S
gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
grad_x = cv2.Scharr(gray, ddepth, 1, 0)
grad_y = cv2.Scharr(gray, ddepth, 0, 1)
abs_grad_x = cv2.convertScaleAbs(grad_x)
abs_grad_y = cv2.convertScaleAbs(grad_y)
grad = cv2.addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0)
_, th = cv2.threshold(grad, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
w, h = th.shape[1], th.shape[0]
cv2.rectangle(th, (0, 0), (w-1, h-1), 255, thickness=12)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) # 定义矩形结构元素
# th = cv2.morphologyEx(th, cv2.MORPH_DILATE, kernel, iterations=1) # 膨胀运算1
edge = cv2.morphologyEx(th, cv2.MORPH_CLOSE, kernel, iterations=1) # 闭运算1
# kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3)) # 定义矩形结构元素
# closed = cv2.morphologyEx(th, cv2.MORPH_CLOSE, kernel, iterations=1) # 闭运算1
return edge
if __name__ == "__main__":
img = cv2.imread('paper.png')
edge = edge_calc(img)
cv2.imwrite("paper_mask.png", edge.astype(np.uint8))
主要过程包括:平滑、梯度计算、二值化、边框处理,以及形态学操作。