MATLAB实现GARCH(广义自回归条件异方差)模型计算VaR(Value at Risk)

MATLAB实现GARCH(广义自回归条件异方差)模型计算VaR(Value at Risk)

1.计算模型介绍

使用GARCH(广义自回归条件异方差)模型计算VaR(风险价值)时,方差法是一个常用的方法。GARCH模型能够捕捉到金融时间序列数据中的波动聚集性,即大的波动往往伴随着大的波动,小的波动往往伴随着小的波动。这种特性使得GARCH模型在风险管理中具有广泛的应用。

GARCH模型下的VaR计算通常涉及以下步骤:

(1)建立GARCH模型:

需要确定GARCH模型的阶数,这通常通过分析数据的自相关性和偏自相关性来完成。

然后,使用历史数据来估计GARCH模型的参数。

(2)预测波动率:

利用估计好的GARCH模型,可以预测未来一段时间的波动率。

波动率是衡量资产价格变动幅度的一个重要指标,它反映了资产价格的不确定性。

(3)计算VaR:

在得到了未来波动率的预测值后,可以使用VaR的计算公式来估计潜在的风险损失。

VaR的计算公式通常表示为:VaR = -P × Z × σ,其中P是资产的价值,Z是置信水平对应的分位数(例如,在95%的置信水平下,Z通常取1.645,这是基于正态分布的近似值),σ是预测的波动率。如果不乘以资产价格P, 得到的VaR是比例。

2. MATLAB代码
clc;close all;clear all;warning off;% clear all

rand('seed', 100);

randn('seed', 100);

format long g;

pricemat = [100, 101, 102, 99, 98, 100, 103, 105, 104, 102,105,106,106,108.5,103,110,112,135,100,111,112,113,95,96,96,98]';% 价格数据

returnmat = (pricemat(2:end)-pricemat(1:end-1)) ./ pricemat(1:end-1);% 计算收益率

% 设置garch模型

model1=garch('GARCHLags',1,'ARCHLags',1,'Distribution','Gaussian');% 设置garch(p,q)模型 正态分布

[model1,bb]=estimate(model1,returnmat);%估计该模型的参数 res是时间序列,为列向量

ht = infer(model1,returnmat);% 计算对应的条件方差

vF1 = forecast(model1,5,'Y0',returnmat);% 预测

[v,y_pre] = simulate(model1,length(returnmat));

confidence_level=0.90;% 置信水平

Zc=norminv(confidence_level,0,1);% 对应置信水平

VaR=Zc.*sqrt(ht);% 计算VaR VaR = -Zc × σ,其中Zc是置信水平对应的分位数,σ是预测的波动率

VaR

%

%% 绘图

figure;

plot(VaR,'b.-','linewidth',1);

legend({'VaR'},'fontname','宋体');

xlabel('日期','fontname','宋体');

ylabel('VaR(比例)','fontname','宋体');

title('VaR','fontname','宋体');

3.程序结果

    GARCH(1,1) Conditional Variance Model:

    ----------------------------------------

    Conditional Probability Distribution: Gaussian

                                  Standard          t    

     Parameter       Value          Error       Statistic

    -----------   -----------   ------------   -----------

     Constant    0.000685012   0.000598346        1.14484

     GARCH{1}       0.464416      0.211764        2.19308

      ARCH{1}       0.535584      0.462277        1.15858

VaR =

         0.107846021315506

        0.0813296872988432

        0.0654458648371772

        0.0622506064634835

        0.0549041830358687

        0.0537714791530977

        0.0570921236788682

        0.0545019945385363

        0.0508366217176573

        0.0514836920397382

         0.055829537347057

        0.0515013106538324

        0.0485474473133594

        0.0520470720278667

        0.0681424847286693

        0.0856987471245208

        0.0694739436633069

         0.201151576498066

         0.281142023268773

         0.220173500596007

         0.153979304489929

         0.110482088483556

         0.170626840986189

         0.121421937427502

        0.0892863901640001

>>

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/920809.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

力扣 LeetCode 513. 找树左下角的值(Day8:二叉树)

解题思路: 方法一:递归法(方法二更好理解,个人更习惯方法二) 前中后序均可,实际上没有中的处理 中左右,左中右,左右中,实际上都是左在前,所以遇到的第一个…

Nuget For Unity插件介绍

NuGet for Unity:提升 Unity 开发效率的利器 NuGet 是 .NET 开发生态中不可或缺的包管理工具,你可以将其理解为Unity的Assets Store或者UPM,里面有很多库可以帮助我们提高开发效率。当你想使用一个库,恰好这个库没什么依赖(比如newtonjson),那么下载包并找到Dll直接…

“乐鑫组件注册表”简介

当启动一个新的开发项目时,开发者们通常会利用库和驱动程序等现有的代码资源。这种做法不仅节省时间,还简化了项目的维护工作。本文将深入探讨乐鑫组件注册表的概念及其核心理念,旨在指导您高效地使用和贡献组件。 概念解析 ESP-IDF 的架构…

药房革新:Spring Boot中药实验管理系统

2相关技术 2.1 MYSQL数据库 MySQL是一个真正的多用户、多线程SQL数据库服务器。 是基于SQL的客户/服务器模式的关系数据库管理系统,它的有点有有功能强大、使用简单、管理方便、安全可靠性高、运行速度快、多线程、跨平台性、完全网络化、稳定性等,非常…

嵌入式 UI 开发的开源项目推荐

嵌入式开发 UI 难吗?你的痛点我懂!作为嵌入式开发者,你是否也有以下困扰?设备资源太少,功能和美观只能二选一?调试效率低,每次调整都要反复烧录和测试?开发周期太长,让你…

CTF--php伪协议结合Base64绕过

Base64绕过 在ctf中,base64是比较常见的编码方式,在做题的时候发现自己对于base64的编码和解码规则不是很了解,并且恰好碰到了类似的题目,在翻阅了大佬的文章后记录一下,对于base64编码的学习和一个工具 base64编码是…

基于Java Springboot电影播放平台

一、作品包含 源码数据库设计文档万字PPT全套环境和工具资源部署教程 二、项目技术 前端技术:Html、Css、Js、Vue、Element-ui 数据库:MySQL 后端技术:Java、Spring Boot、MyBatis 三、运行环境 开发工具:IDEA/eclipse 数据…

国标GB28181摄像机接入EasyGBS国标GB28181设备管理软件:GB28181-2022媒体传输协议解析

随着信息技术的飞速发展,视频监控领域正经历从传统安防向智能化、网络化安防的深刻转变。在这一转变过程中,国标GB28181设备管理软件EasyGBS成为了这场技术变革的重要一环。 GB28181-2022媒体传输协议 媒体传输命令包括实时视音频点播、历史视音频回放/…

Redis-monitor安装与配置

0、前言 压测环境因为隔离原因没法直接查看redis日志跟性能指数,只能通过监控工具查看,使用开源redis-montor监控查看 开源地址: GitCode - 全球开发者的开源社区,开源代码托管平台 1、python环境准备(python -v有的忽略&#xff…

windows basic语言学习笔记,批处理命令的简单使用

BAT学习笔记 前言 Windows 命令行中对参数的大小写不敏感,因此 /D 和 /d 的效果完全一致。 1. 代码1:创建目录并复制文件 源代码: echo off REM 创建目标目录,如果不存在 if not exist "C:\h2" (mkdir "C:\h2&q…

5-对象的访问权限

对象的访问权限知识点 对象的分类 在数据库中,数据库的表、索引、视图、缺省值、规则、触发器等等、都可以被称为数据库对象,其中对象主要分为两类 1、模式(schema)对象:模式对象可以理解为一个存储目录、包含视图、索引、数据类型、函数和…

Java Database Connectivity (JDBC + Servlet)

Java Database Connectivity (JDBC)是一个Java API,用于与数据库进行连接和操作。通过JDBC,Java程序可以与各种关系型数据库进行通信,执行SQL查询、更新数据等操作。 一、Java连接数据库两种方式 ​​​​​ ​​ 二、Java中…

[Realtek sdk-3.4.14b] RTL8197FH-VG新增jffs2分区操作说明

sdk说明 ** Gateway/AP firmware v3.4.14b – Aug 26, 2019**  Wireless LAN driver changes as:  Refine WiFi Stability and Performance  Add 8812F MU-MIMO  Add 97G/8812F multiple mac-clone  Add 97G 2T3R antenna diversity  Fix 97G/8812F/8814B MP issu…

鸿蒙多线程开发——线程间数据通信对象01

1、线程间通信 线程间通信指的是并发多线程间存在的数据交换行为。由于ArkTS语言兼容TS/JS,其运行时的实现与其它所有的JS引擎一样,都是基于Actor内存隔离的并发模型提供并发能力。 对于不同的数据对象,在ArkTS线程间通信的行为是有差异的&…

基于单片机的多功能跑步机控制系统

本设计基于单片机的一种多功能跑步机控制系统。该系统以STM32单片机为主控制器,由七个电路模块组成,分别是:单片机模块、电机控制模块、心率检测模块、音乐播放模块、液晶显示模块、语音控制模块、电源模块。其中,单片机模块是整个…

测试工程师如何在面试中脱颖而出

目录 1.平时工作中是怎么去测的? 2.B/S架构和C/S架构区别 3.B/S架构的系统从哪些点去测? 4.你为什么能够做测试这一行?(根据个人情况分析理解) 5.你认为测试的目的是什么? 6.软件测试的流程&#xff…

PHM技术:基于支持向量机的智能故障诊断 | 行星齿轮箱智能故障诊断

目录 1.数据获取 2.特征提取与选择 3.健康状态识别 1.数据获取 用的行星齿轮箱数据采集自图1中的多级齿轮传动系统实验台中,在实验过程中,分别模拟了8种行星齿轮箱的健康状态,包括正常、第一级太阳轮点蚀、第一级太阳轮齿根裂纹、第一级…

【划分型 DP-约束划分个数】【hard】【阿里笔试】力扣1278. 分割回文串 III

给你一个由小写字母组成的字符串 s,和一个整数 k。 请你按下面的要求分割字符串: 首先,你可以将 s 中的部分字符修改为其他的小写英文字母。 接着,你需要把 s 分割成 k 个非空且不相交的子串,并且每个子串都是回文串…

国标GB28181视频平台EasyCVR视频融合平台H.265/H.264转码业务流程

在当今数字化、网络化的视频监控领域,大中型项目对于视频监控管理平台的需求日益增长,特别是在跨区域、多设备、高并发的复杂环境中。EasyCVR视频监控汇聚管理平台正是为了满足这些需求而设计的,它不仅提供了全面的管理功能,还支持…

相机触发模式

参考自:相机触发模式_硬触发和软触发的区别-CSDN博客 一、图像采集模式分类 相机的图像采集模式分为内触发模式与外触发模式。其中内触发模式包含连续采集、单帧采集两种形式;外触发模式包含软件外触发、硬件外触发。本文以海康相机的软件平台作介绍&a…