论文阅读--supervised learning with quantum enhanced feature spaces

简略摘要

        量子算法实现计算加速的核心要素是通过可控纠缠和干涉利用指数级大的量子态空间。本文在超导处理器上提出并实验实现了两种量子算法。这两种方法的一个关键组成部分是使用量子态空间作为特征空间。只有在量子计算机上才能有效访问的量子增强特征空间的使用为量子优势提供了可能的途径。该算法解决了监督学习的一个问题:分类器的构造。其中一种方法是量子变分分类器,它使用变分量子电路1,2以一种类似于传统支持向量机方法的方式对数据进行分类。另一种方法是量子核估计器,在量子计算机上估计核函数并优化经典支持向量机。这两种方法为探索噪声中等规模量子计算机在机器学习中的应用提供了工具。

模型构建

       图1量子核函数。a,单个量子比特的特征图表示。区间 Ω = (0, 2π] 中具有二进制标签(a,右)的经典数据集可以通过 b 中描述的非线性特征图映射到 Bloch 球面(红线和蓝线)上。对于单个量子比特 = UΦ Z (x),x 是角度 x ∈ Ω 的相位门。映射数据可以通过法线 w 给出的超平面分离。具有正期望值 w 的状态会获得 [+1](红色)标签,而负值则为对于一般电路,UΦ(x) 由计算基础中对角的单量子比特和双量子比特单元的乘积形成。在我们的实验中,训练数据和测试数据都是人工生成的,以便使用特征图进行完美分类。电路系列通过系数 φS(x) 非线性地依赖于数据,其中 ∣S∣ ≤ 2。c,使用 CNOT 和 Z 门对参数化对角单量子比特和双量子比特操作进行实验实现。

        图 2 | 实验实施。a、五量子比特量子处理器示意图。实验是在图中突出显示的量子比特 Q0 和 Q1 上进行的。b、用于我们的优化方法的变分电路。两个顶部的量子比特描述了实施的电路。我们为变分幺正 W(θ) = U (θ ) U ...U (θ ) U U (θ ) l(olc) l ent l(o2c) 2 ent l(o1c) 1 16,17 选择一个共同的假设。我们交替使用纠缠门层 = ∏ ∈ U CZ(i, j) ij E ent ( , ) 和单量子比特旋转的完整层 θ = ⊗ = θ U ( ) U( ) l(otc) t in 1 i,t 和 U(θ ) ∈ SU(2) i,t 。对于纠缠步骤,我们沿超导芯片的交互图 E 的边缘 (0, 1) 使用受控 Z 相位门 CZ(i, j)。灰色背景说明了扩展到更多量子比特的情况。c,电路用于直接估计数据 x 和 z 的一对特征向量之间的保真度,如我们的第二种方法所用。Q0、Q1 上的电路描绘了实现的电路,而灰色背景说明了电路的一般结构。该电路由 Hadamard 门 H 组成,与由 φS(x) 参数化的对角单元 Uφ(x) 交错,以直接估计数据 x 和 z 的一对特征向量之间的保真度,如我们的第二种方法所用。

分类结果

        图 3 | 方法收敛和分类结果。a,Spall 的 SPSA 算法经过 250 次迭代后,成本函数 R (θ) emp 收敛。红色(或黑色)曲线对应 l = 4(或 l = 0)。将零噪声外推获得的 pˆk 估计值的成本函数(实线)与未缓解估计值的成本函数(虚线)进行比较。我们每个深度训练三个数据集,并对每个训练集执行 20 次分类。c,分类结果显示为所有三个随机选择的单元的蓝色直方图(每个深度总共 60 个分类,每个标签每个分类 20 个数据点),平均值用黑点表示。误差线是平均值的标准误差。插图显示了使用 l = 4 分类器电路获得的一个每个标签 20 个点的测试集的测量标签 +1 概率的直方图,表明该集的分类成功率为 100%。

        红色虚线显示了我们的直接核估计方法的结果,以供比较,其中集合 I 和 II 的成功率为 100%,集合 III 的成功率为 94.75%。b,本文中两种方法使用的示例数据。数据标签(红色表示 +1 标签,蓝色表示 -1 标签)的间隙为 Δ = 0.3(白色区域)。每个标签有 20 个点的训练集显示为白色和黑色圆圈。对于量子核估计方法,我们展示了支持向量(绿色圆圈)和分类测试集(白色和黑色方块)。三个点被错误分类,标记为 A、B 和 C。对于每个测试数据点 sj,我们在 b 的底部绘制 α ∑ y ∗K(x , s ) i j。点 A、B 和 C 均属于标签 +1,分别给出 α ∑ y ∗K(x, s)ij = −1.033、−0.367 和 −1.082。

        图 4 | 集合 III 的核。a,实验(左)和理想(右)核矩阵,包含用于训练集合 III 的所有数据点的内积(图 3b 中的圆形符号)。与理想核 ∣K−Kˆ ∣ 的最大偏差出现在元素 K8,15 处。b 显示了第 8 行的切线(a 中的红色箭头表示),其中实验(或理想)结果显示为红色(或蓝色)条。我们注意到,当应用错误缓解技术时,核中接近于零的条目可能会变为负数(例如 b 中的 K8,30)。

方法

详细描述见参考文献1页面中的补充信息

        我们考虑两种不同的学习方案。第一种称为“量子变分分类”,第二种称为“量子核估计”。当考虑二元分类问题时,两种方案都在 n 个量子比特的状态空间中构建一个分离超平面,参见第 III B 节。第一种方案还能够在多标签设置中运行。从参考状态 | 0〉〈0 |n 开始,使用非线性依赖于数据的单元电路系列将经典数据映射到 dim = 4n 的空间。

具体内容包括:

对分类问题的描述

对量子变分问题的描述

量子核函数估计

SVM与变分量子分类器的关联

变分线路分类器

使用一个合适的特征映射编码数据

纠缠的非平凡特征映射

选择损失函数对于线路优化

二值标签分类

量子核估计

硬件装置参数

量子门特征

参考文献

1.Supervised learning with quantum-enhanced feature spaces | Nature

2.Vapnik, V. The Nature of Statistical Learning Theory (Springer Science & Business Media, 2013).

3. Rebentrost, P., Mohseni, M. & Lloyd, S. Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014).

附录

1.Wolfe-Dual SVM 是支持向量机(SVM)优化问题的一种形式,通过将 SVM 的原始优化问题(称为 Primal Problem)转化为对偶问题(Dual Problem)来解决。这种转化利用了凸优化理论中的 Wolfe 对偶性

为什么对偶问题减少了变量的数量?

  • 对偶形式将变量从原始问题中的 www 和 bbb 转换为 α\alphaα,降低了变量的数量。
  • 特别是在数据维度 ddd 远大于样本数 NNN 的情况下(如高维稀疏数据),对偶形式更高效。

2.什么是软间隔支持向量机(Soft Margin SVM) ?松弛操作如何优化SVM

 

3。关于 张量网络为什么可以用于机器学习?

4.Karush-Kuhn-Tucker (KKT) 条件是什么 ?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/920014.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

网络安全之信息收集-实战-1

请注意,本文仅供合法和授权的渗透测试使用,任何未经授权的活动都是违法的。 实战:补天公益src“吉林通用航空职业技术学院” 奇安信|用户登录https://www.butian.net/Loo/submit?cid64918 域名或ip:https://www.jlth…

jenkins离线安装插件

Jenkins 在线安装插件失败 报错: Caused: java.io.IOException: Failed to load https://updates.jenkins.io/download/plugins/login-theme/244.vd67c77f0c4c8/login-theme.hpi to /var/jenkins_home/plugins/login-theme.jpi.tmpat hudson.model.UpdateCenter$Up…

MATLAB的语音信号采集与处理分析

1、基本描述 本文描述的系统是一个全面而精细的语音信号处理平台,核心组件由MATLAB的高级功能模块构建而成。系统的核心交互界面,借助于MATLAB的uifigure函数搭建,为用户提供了一个直观且响应迅速的操作环境。通过设计的GUI按钮,如…

【赵渝强老师】MySQL的慢查询日志

MySQL的慢查询日志可以把超过参数long_query_time时间的所有SQL语句记录进来,帮助DBA人员优化所有有问题的SQL语句。通过mysqldumpslow工具可以查看慢查询日志。 视频讲解如下: MySQL的慢查询日志 【赵渝强老师】MySQL的慢查询日志 下面通过具体的演示…

IDEA指定Maven的settings不生效问题处理

文章目录 一、问题描述二、问题分析三、问题解决 一、问题描述 在Idea中手动指定了maven的settings配置文件,但是一直没生效。 如下图:设置加载settings-aliyun.xml文件,但是最后发现还是在加载settings.xml文件 二、问题分析 ‌在Intel…

论文阅读:Uni-ISP Unifying the Learning of ISPs from Multiple Cameras

这是 ECCV 2024 的一篇文章,文章作者想建立一个统一的 ISP 模型,以实现在不同手机之间的自由切换。文章作者是香港中文大学的 xue tianfan 和 Gu jinwei 老师。 Abstract 现代端到端图像信号处理器(ISPs)能够学习从 RAW/XYZ 数据…

[免费]SpringBoot+Vue毕业设计论文管理系统【论文+源码+SQL脚本】

大家好,我是java1234_小锋老师,看到一个不错的SpringBootVue毕业设计论文管理系统,分享下哈。 项目视频演示 【免费】SpringBootVue毕业设计论文管理系统 Java毕业设计_哔哩哔哩_bilibili 项目介绍 现代经济快节奏发展以及不断完善升级的信…

项目技术栈-解决方案-web3去中心化

web3去中心化 Web3 DApp区块链:钱包:智能合约:UI:ETH系开发技能树DeFi应用 去中心化金融P2P 去中心化网络参考Web3 DApp 区块链: 以以太坊(Ethereum)为主流,也包括Solana、Aptos等其他非EVM链。 区块链本身是软件,需要运行在一系列节点上,这些节点组成P2P网络或者半…

使用 Axios 拦截器优化 HTTP 请求与响应的实践

目录 前言1. Axios 简介与拦截器概念1.1 Axios 的特点1.2 什么是拦截器 2. 请求拦截器的应用与实践2.1 请求拦截器的作用2.2 请求拦截器实现 3. 响应拦截器的应用与实践3.1 响应拦截器的作用3.2 响应拦截器实现 4. 综合实例:一个完整的 Axios 配置5. 使用拦截器的好…

Photino:通过.NET Core构建跨平台桌面应用程序,.net国产系统

一、Photino.NET简介: 最近发现了一个不错的框架 Photino.Net 一份代码运行,三个平台 windows max linux ,其中windows10,windows11,ubuntu 18.04,ubuntu 20.04 已测试均可以。mac 因为没有相关电脑没有测试。 github:https://github.com/t…

Python爬虫:如何从1688阿里巴巴获取公司信息

在当今的数字化时代,数据已成为企业决策和市场分析的重要资产。对于市场研究人员和企业分析师来说,能够快速获取和分析大量数据至关重要。阿里巴巴的1688.com作为中国最大的B2B电子商务平台之一,拥有海量的企业档案和产品信息。本文将介绍如何…

如何构建高效的接口自动化测试框架?

🍅 点击文末小卡片 ,免费获取软件测试全套资料,资料在手,涨薪更快 在选择接口测试自动化框架时,需要根据团队的技术栈和项目需求来综合考虑。对于测试团队来说,使用Python相关的测试框架更为便捷。无论选…

创建型设计模式(模版方法、观察者模式、策略模式)

继承过程中,虚函数表的变化。动态多态,继承中虚函数的重写

数据结构(顺序队列——c语言实现)

队列的概念: 队列是限制在两端进行插入和删除操作的线性表,允许进行存入的一端称为“队尾”,允许进行删除操作的一端称为“队头”。当线性表中没有元素时,称为“空队”。特点:先进先出(FIFO)。 …

3C产品说明书电子化转变:用户体验、环保与商业机遇的共赢

在科技日新月异的当代社会,3C产品(涵盖计算机类、通信类和消费类电子产品)已成为我们日常生活中不可或缺的重要元素。与此同时,这些产品的配套说明书也经历了一场从纸质到电子化的深刻变革。这一转变不仅体现了技术的飞速进步&…

web服务nginx实验6:nginx发布动态页面的方法

安装软件: 启动服务: 创建文件: 再vim打开,写东西: 重启服务: Windows客户端测试:(服务端要关防火墙) 删除默认访问发.php文件: 创建一个新的配置文件&#x…

Three.js 相机控制器Controls

在 3D 场景中,摄像机的控制尤为重要,因为它决定了用户如何观察和与场景互动。Three.js 提供了多种相机控制器,最常用的有 OrbitControls、TrackballControls、FlyControls 和 FirstPersonControls。OrbitControls 适合用于查看和检查 3D 模型…

应急响应:玄机_Linux后门应急

https://xj.edisec.net/challenges/95 11关做出拿到万能密码,ATMB6666,后面都在root权限下操作 1、主机后门用户名称:提交格式如:flag{backdoor} cat /etc/passwd,发现后门用户 flag{backdoor} 2、主机排查项中可以…

.NET 9与C# 13革新:新数据类型与语法糖深度解析

记录(Record)类型 使用方式: public record Person(string FirstName, string LastName); 适用场景:当需要创建不可变的数据结构,且希望自动生成 GetHashCode 和 Equals 方法时。不适用场景:当数据结构需…

阿里云IIS虚拟主机部署ssl证书

宝塔配置SSL证书用起来是很方便的,只需要在站点里就可以配置好,但是云虚拟主机在管理的时候是没有这个权限的,只提供了简单的域名管理等信息。 此处记录下阿里云(原万网)的IIS虚拟主机如何配置部署SSL证书。 进入虚拟…