一、知识点
(一)高阶导数
- 导数的导数叫做二阶导数,二阶导数的导数叫做三阶导数,三阶导数的导数叫做四阶导数, ⋯ \cdots ⋯, ( n − 1 ) (n-1) (n−1) 阶导数的导数叫做 n n n 阶导数.
- 二阶及二阶以上的导数统称高阶导数.
(二)莱布尼茨公式
- ( u v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) (uv)^{(n)}=\sum_{k=0}^nC^k_nu^{(n-k)}v^{(k)} (uv)(n)=∑k=0nCnku(n−k)v(k)
二、练习题
- 求下列函数的二阶导数:
-
(1) y = 2 x 2 + l n x y=2x^2+lnx y=2x2+lnx
y ′ = 4 x + 1 x y'=4x+\frac{1}{x} y′=4x+x1
y ′ ′ = 4 − 1 x 2 y''=4-\frac{1}{x^2} y′′=4−x21
-
(2) y = e 2 x − 1 y=e^{2x-1} y=e2x−1
y ′ = 2 ⋅ e 2 x − 1 y'=2\cdot e^{2x-1} y′=2⋅e2x−1
y ′ ′ = 4 ⋅ e 2 x − 1 y''=4\cdot e^{2x-1} y′′=4⋅e2x−1
-
(3) y = x c o s x y=xcosx y=xcosx
y ′ = c o s x − x s i n x y'=cosx-xsinx y′=cosx−xsinx
y ′ ′ = − s i n x − s i n x − x c o s x y''=-sinx-sinx-xcosx y′′=−sinx−sinx−xcosx
= − 2 s i n x − x c o s x =-2sinx-xcosx =−2sinx−xcosx -
(4) y = e − t s i n t y=e^{-t}sint y=e−tsint
y ′ = − e − t s i n t + e − t c o s t y'=-e^{-t}sint+e^{-t}cost y′=−e−tsint+e−tcost
= e − t c o s t − e − t s i n t =e^{-t}cost-e^{-t}sint =e−tcost−e−tsinty ′ ′ = − e − t c o s t − e − t s i n t − ( − e − t s i n t + e − t c o s t ) y''=-e^{-t}cost-e^{-t}sint-(-e^{-t}sint+e^{-t}cost) y′′=−e−tcost−e−tsint−(−e−tsint+e−tcost)
= − e − t c o s t =-e^{-t}cost =−e−tcost
-
(5) y = a 2 − x 2 y=\sqrt{a^2-x^2} y=a2−x2
y ′ = − 2 x 2 a 2 − x 2 y'=\frac{-2x}{2\sqrt{a^2-x^2}} y′=2a2−x2−2x
= − x a 2 − x 2 =\frac{-x}{\sqrt{a^2-x^2}} =a2−x2−xy ′ ′ = − a 2 − x 2 − ( − x ) ( − − 2 x 2 a 2 − x 2 ) a 2 − x 2 y''=\frac{-\sqrt{a^2-x^2}-(-x)(-\frac{-2x}{2\sqrt{a^2-x^2}})}{a^2-x^2} y′′=a2−x2−a2−x2−(−x)(−2a2−x2−2x)
= − a 2 ( a 2 − x 2 ) 3 =-\frac{a^2}{\sqrt{(a^2-x^2)^3}} =−(a2−x2)3a2 -
(6) y = l n ( 1 − x 2 ) y=ln(1-x^2) y=ln(1−x2)
y ′ = − 2 x 1 − x 2 y'=\frac{-2x}{1-x^2} y′=1−x2−2x
y ′ ′ = − 2 ( 1 − x 2 ) + 2 x ( − 2 x ) ( 1 − x 2 ) 2 y''=\frac{-2(1-x^2)+2x(-2x)}{(1-x^2)^2} y′′=(1−x2)2−2(1−x2)+2x(−2x)
= − 2 ( 1 − x 2 ) − 2 x ( − 2 x ) ( 1 − x 2 ) 2 =-\frac{2(1-x^2)-2x(-2x)}{(1-x^2)^2} =−(1−x2)22(1−x2)−2x(−2x)
= − 2 + 2 x 2 ( 1 − x 2 ) 2 =-\frac{2+2x^2}{(1-x^2)^2} =−(1−x2)22+2x2
-
(7) y = t a n x y=tanx y=tanx
y ′ = 1 s e c 2 x y'=\frac{1}{sec^2x} y′=sec2x1
y ′ ′ = ( c o s − 2 x ) ′ y''=(cos^{-2}x)' y′′=(cos−2x)′
= − 2 c o s − 3 x ( − s i n x ) =-2cos^{-3}x(-sinx) =−2cos−3x(−sinx)
= 2 t a n x ⋅ s e c 2 x =2tanx\cdot sec^2x =2tanx⋅sec2x
-
(8) y = 1 x 3 + 1 y=\frac{1}{x^3+1} y=x3+11
y ’ = − 3 x 2 ( x 3 + 1 ) 2 y’=\frac{-3x^2}{(x^3+1)^2} y’=(x3+1)2−3x2
y ’’ = − 6 x ( x 3 + 1 ) 2 + 3 x 2 ⋅ 2 ( x 3 + 1 ) ⋅ 3 x 2 ( x 3 + 1 ) 4 y’’=\frac{-6x(x^3+1)^2+3x^2\cdot 2(x^3+1)\cdot 3x^2}{(x^3+1)^4} y’’=(x3+1)4−6x(x3+1)2+3x2⋅2(x3+1)⋅3x2
= − 6 x ( x 3 + 1 ) 2 + 18 x 4 ( x 3 + 1 ) ( x 3 + 1 ) 4 =\frac{-6x(x^3+1)^2+18x^4(x^3+1)}{(x^3+1)^4} =(x3+1)4−6x(x3+1)2+18x4(x3+1)
= 18 x 4 − 6 x ( x 3 + 1 ) ( x 3 + 1 ) 3 =\frac{18x^4-6x(x^3+1)}{(x^3+1)^3} =(x3+1)318x4−6x(x3+1)
= 12 x 4 − 6 x ( x 3 + 1 ) 3 =\frac{12x^4-6x}{(x^3+1)^3} =(x3+1)312x4−6x -
(9) y = ( 1 + x 2 ) a r c t a n x y=(1+x^2)arctanx y=(1+x2)arctanx
y ′ = ( 1 + x 2 ) ′ a r c t a n x + ( 1 + x 2 ) ( a r c t a n x ) ′ y'=(1+x^2)'arctanx+(1+x^2)(arctanx)' y′=(1+x2)′arctanx+(1+x2)(arctanx)′
= 2 x a r c t a n x + 1 + x 2 1 + x 2 =2xarctanx+\frac{1+x^2}{1+x^2} =2xarctanx+1+x21+x2
= 2 x ⋅ a r c t a n x + 1 =2x\cdot arctanx+1 =2x⋅arctanx+1
y ′ ′ = ( 2 x ) ′ a r c t a n x + 2 x ( a r c t a n x ) ′ y''=(2x)'arctanx+2x(arctanx)' y′′=(2x)′arctanx+2x(arctanx)′
= 2 a r c t a n x + 2 x 1 + x 2 =2arctanx+\frac{2x}{1+x^2} =2arctanx+1+x22x
-
(10) y = e x x y=\frac{e^x}{x} y=xex
y ′ = ( e x ) ′ x − e x ( x ) ′ x 2 y'=\frac{(e^x)'x-e^x(x)'}{x^2} y′=x2(ex)′x−ex(x)′
= x e x − e x x 2 =\frac{xe^x-e^x}{x^2} =x2xex−ex
y ′ ′ = ( x e x − e x ) ′ x 2 − ( x e x − e x ) ( x 2 ) ′ x 4 y''=\frac{(xe^x-e^x)'x^2-(xe^x-e^x)(x^2)'}{x^4} y′′=x4(xex−ex)′x2−(xex−ex)(x2)′
= ( e x + x e x − e x ) x 2 − 2 x ( x e x − e x ) x 4 =\frac{(e^x+xe^x-e^x)x^2-2x(xe^x-e^x)}{x^4} =x4(ex+xex−ex)x2−2x(xex−ex)
= x 3 e x − 2 x 2 e x + 2 x e x x 4 =\frac{x^3e^x-2x^2e^x+2xe^x}{x^4} =x4x3ex−2x2ex+2xex
= e x ( x 3 − 2 x 2 + 2 x ) x 4 =\frac{e^x(x^3-2x^2+2x)}{x^4} =x4ex(x3−2x2+2x)
= e x ( x 2 − 2 x + 2 ) x 3 =\frac{e^x(x^2-2x+2)}{x^3} =x3ex(x2−2x+2)
-
(11) y = x e x 2 y=xe^{x^2} y=xex2
y ′ = e x 2 + x e x 2 ⋅ 2 x y'=e^{x^2}+xe^{x^2}\cdot 2x y′=ex2+xex2⋅2x
= e x 2 ( 1 + 2 x 2 ) =e^{x^2}(1+2x^2) =ex2(1+2x2)
y ′ ′ = ( e x 2 ) ′ ( 1 + 2 x 2 ) + e x 2 ( 1 + 2 x 2 ) ′ y''=(e^{x^2})'(1+2x^2)+e^{x^2}(1+2x^2)' y′′=(ex2)′(1+2x2)+ex2(1+2x2)′
= 2 x e x 2 ( 1 + 2 x 2 ) + 4 x e x 2 =2xe^{x^2}(1+2x^2)+4xe^{x^2} =2xex2(1+2x2)+4xex2
= 2 x e x 2 ( 1 + 2 x 2 + 2 ) =2xe^{x^2}(1+2x^2+2) =2xex2(1+2x2+2)
= 2 x e x 2 ( 3 + 2 x 2 ) =2xe^{x^2}(3+2x^2) =2xex2(3+2x2)
-
(12) y = l n ( x + 1 + x 2 ) y=ln(x+\sqrt{1+x^2}) y=ln(x+1+x2)
y ′ = ( x + 1 + x 2 ) ′ x + 1 + x 2 y'=\frac{(x+\sqrt{1+x^2})'}{x+\sqrt{1+x^2}} y′=x+1+x2(x+1+x2)′
= 1 x + 1 + x 2 ⋅ ( 1 + 2 x 2 1 + x 2 ) =\frac{1}{x+\sqrt{1+x^2}}\cdot (1+\frac{2x}{2\sqrt{1+x^2}}) =x+1+x21⋅(1+21+x22x)
= 1 x 2 + 1 =\frac{1}{\sqrt{x^2+1}} =x2+11
y ′ ′ = [ ( x 2 + 1 ) − 1 2 ] ′ y''=[(x^2+1)^{-\frac{1}{2}}]' y′′=[(x2+1)−21]′= − 1 2 ( x 2 + 1 ) − 3 2 ⋅ 2 x =-\frac{1}{2}(x^2+1)^{-\frac{3}{2}}\cdot 2x =−21(x2+1)−23⋅2x
= − x ( x 2 + 1 ) − 3 2 =-x(x^2+1)^{-\frac{3}{2}} =−x(x2+1)−23
- 设 f ( x ) = ( x + 10 ) 6 f(x)=(x+10)^6 f(x)=(x+10)6,求 f ′ ′ ′ ( 2 ) f'''(2) f′′′(2)
-
解:
f ′ ( x ) = [ ( x + 10 ) 6 ] ′ = 6 ( x + 10 ) 5 f'(x)=[(x+10)^6]'=6(x+10)^5 f′(x)=[(x+10)6]′=6(x+10)5
f ′ ′ ( x ) = 30 ( x + 10 ) 4 f''(x)=30(x+10)^4 f′′(x)=30(x+10)4
f ′ ′ ′ ( x ) = 120 ( x + 10 ) 3 f'''(x)=120(x+10)^3 f′′′(x)=120(x+10)3
f ′ ′ ′ ( 2 ) = 120 ⋅ ( 2 + 10 ) 3 = 207360 f'''(2)=120\cdot (2+10)^3=207360 f′′′(2)=120⋅(2+10)3=207360
- 设 f ′ ′ ( x ) f''(x) f′′(x) 存在,求下列函数的二阶导数 d 2 y d x 2 \frac{d^2y}{dx^2} dx2d2y.
-
(1) y = f ( x 2 ) y=f(x^2) y=f(x2)
d y d x = f ′ ( x 2 ) d x 2 d x \frac{dy}{dx}=f'(x^2)\frac{dx^2}{dx} dxdy=f′(x2)dxdx2
= 2 x f ′ ( x 2 ) =2xf'(x^2) =2xf′(x2)
d 2 y d x 2 = 2 f ′ ( x 2 ) + 2 x d f ′ ( x 2 ) d x \frac{d^2y}{dx^2}=2f'(x^2)+2x\frac{df'(x^2)}{dx} dx2d2y=2f′(x2)+2xdxdf′(x2)
= 2 f ′ ( x 2 ) + 2 x f ′ ′ ( x 2 ) 2 x =2f'(x^2)+2xf''(x^2)2x =2f′(x2)+2xf′′(x2)2x
= 2 f ′ ( x 2 ) + 4 x 2 f ′ ′ ( x 2 ) =2f'(x^2)+4x^2f''(x^2) =2f′(x2)+4x2f′′(x2)
-
(2) y = l n [ f ( x ) ] y=ln[f(x)] y=ln[f(x)]
d y d x = 1 f ( x ) ⋅ f ′ ( x ) = f ′ ( x ) f ( x ) \frac{dy}{dx}=\frac{1}{f(x)}\cdot f'(x)=\frac{f'(x)}{f(x)} dxdy=f(x)1⋅f′(x)=f(x)f′(x)
d 2 y d x 2 = f ′ ′ ( x ) f ( x ) − f ′ ( x ) f ′ ( x ) f 2 ( x ) \frac{d^2y}{dx^2}=\frac{f''(x)f(x)-f'(x)f'(x)}{f^2(x)} dx2d2y=f2(x)f′′(x)f(x)−f′(x)f′(x)
- 试从 d x d y = 1 y ′ \frac{dx}{dy}=\frac{1}{y'} dydx=y′1 导出:
-
(1) d 2 x d y 2 = − y ′ ′ ( y ′ ) 3 \frac{d^2x}{dy^2}=-\frac{y''}{(y')^3} dy2d2x=−(y′)3y′′
-
证明:
d 2 x d y 2 = d d y ( d x d y ) \frac{d^2x}{dy^2}=\frac{d}{dy}(\frac{dx}{dy}) dy2d2x=dyd(dydx)
= d ( 1 y ′ ) d y =\frac{d(\frac{1}{y'})}{dy} =dyd(y′1)
= d ( 1 y ′ ) d x ⋅ d x d y =\frac{d(\frac{1}{y'})}{dx}\cdot \frac{dx}{dy} =dxd(y′1)⋅dydx
= − y ′ ′ ( y ′ ) 2 ⋅ 1 y ′ =\frac{-y''}{(y')^2}\cdot \frac{1}{y'} =(y′)2−y′′⋅y′1
= − y ′ ′ ( y ′ ) 3 =-\frac{y''}{(y')^3} =−(y′)3y′′
-
(2) d 3 x d y 3 = 3 ( y ′ ′ ) 2 − y ′ y ′ ′ ′ ( y ′ ) 5 \frac{d^3x}{dy^3}=\frac{3(y'')^2-y'y'''}{(y')^5} dy3d3x=(y′)53(y′′)2−y′y′′′
-
证明:
d d y ( d 2 x d y 2 ) = d ( − y ′ ′ ( y ′ ) 3 ) d x ⋅ d x d y \frac{d}{dy}(\frac{d^2x}{dy^2})=\frac{d(-\frac{y''}{(y')^3})}{dx}\cdot \frac{dx}{dy} dyd(dy2d2x)=dxd(−(y′)3y′′)⋅dydx
= − y ′ ′ ′ ( y ′ ) 3 − y ′ ′ ⋅ 3 ( y ′ ) 2 ⋅ y ′ ′ ( y ′ ) 6 ⋅ 1 y ′ =-\frac{y'''(y')^3-y''\cdot 3(y')^2\cdot y''}{(y')6}\cdot \frac{1}{y'} =−(y′)6y′′′(y′)3−y′′⋅3(y′)2⋅y′′⋅y′1
= 3 ( y ′ ′ ) 2 − y ′ y ′ ′ ′ ( y ′ ) 5 =\frac{3(y'')^2-y'y'''}{(y')^5} =(y′)53(y′′)2−y′y′′′
-
已知物体的运动规律为 s = A s i n ω t s=Asin\omega t s=Asinωt( A A A、 ω \omega ω 是常数),求物体运动的加速度,并验证: d 2 s d t 2 + ω 2 s = 0 \frac{d^2s}{dt^2}+\omega^2s=0 dt2d2s+ω2s=0.
-
证明:
d s d t = A c o s ω t ⋅ ω \frac{ds}{dt}=Acos\omega t \cdot\omega dtds=Acosωt⋅ω
d 2 s d t 2 = ( A ω c o s ω t ) ′ \frac{d^2s}{dt^2}=(A\omega cos\omega t)' dt2d2s=(Aωcosωt)′
= A ω ( − s i n ω t ) ω =A\omega (-sin\omega t)\omega =Aω(−sinωt)ω
= − ω 2 ⋅ A s i n ω t =-\omega ^2\cdot Asin\omega t =−ω2⋅Asinωt
= − ω 2 s =-\omega^2s =−ω2s
∴ d 2 s d t 2 + ω 2 s = 0 \therefore \frac{d^2s}{dt^2}+\omega^2s=0 ∴dt2d2s+ω2s=0
-
-
密度大的陨星进入大气层时,当它离地心为 s s s 千米时的速度与 s \sqrt{s} s 成反比. 试证陨星的加速度与 s 2 s^2 s2 成反比.
-
证明:
v = d s d t = k s v=\frac{ds}{dt}=\frac{k}{\sqrt{s}} v=dtds=sk( k k k 为比例系数)
加速度 a = d 2 s d t 2 a=\frac{d^2s}{dt^2} a=dt2d2s
= d ( k s ) d s ⋅ d s d t =\frac{d(\frac{k}{\sqrt{s}})}{ds}\cdot \frac{ds}{dt} =dsd(sk)⋅dtds
= − 1 2 k s − 3 2 ⋅ k s − 1 2 =-\frac{1}{2}ks^{-\frac{3}{2}}\cdot ks^{-\frac{1}{2}} =−21ks−23⋅ks−21
= − k 2 2 s 2 =-\frac{k^2}{2s^2} =−2s2k2
∴ \therefore ∴ 陨星的加速度与 s 2 s^2 s2 成反比.
- 假设质点沿 x x x 轴运行的速度为 d x d t = f ( x ) \frac{dx}{dt}=f(x) dtdx=f(x),试求质点运动的加速度.
-
解:
加速度 a = d 2 x d t 2 a=\frac{d^2x}{dt^2} a=dt2d2x
= d ( d x d t ) d t =\frac{d(\frac{dx}{dt})}{dt} =dtd(dtdx)
= d f ( x ) d x ⋅ d x d t =\frac{df(x)}{dx}\cdot \frac{dx}{dt} =dxdf(x)⋅dtdx
= f ′ ( x ) f ( x ) =f'(x)f(x) =f′(x)f(x)
- 验证函数 y = C 1 e λ x + C 2 e − λ x y=C_1e^{\lambda x}+C_2e^{-\lambda x} y=C1eλx+C2e−λx ( λ \lambda λ、 C 1 C_1 C1、 C 2 C_2 C2 是常数)满足关系式 y ′ ′ − λ 2 y = 0 y''-\lambda ^2y=0 y′′−λ2y=0.
-
解:
y ′ = C 1 λ e λ x − C 2 λ e − λ x y'=C_1\lambda e^{\lambda x}-C_2\lambda e^{-\lambda x} y′=C1λeλx−C2λe−λx
y ′ ′ = C 1 λ 2 e λ x + C 2 λ 2 e − λ x y''=C_1\lambda ^2e^{\lambda x}+C_2\lambda ^2e^{-\lambda x} y′′=C1λ2eλx+C2λ2e−λx
y ′ ′ − λ y y''-\lambda y y′′−λy
= C 1 λ 2 e λ x + C 2 λ 2 e − λ x − C 1 λ 2 e λ x − C 2 λ 2 e − λ x =C_1\lambda ^2e^{\lambda x}+C_2\lambda ^2e^{-\lambda x}-C_1\lambda ^2e^{\lambda x}-C_2\lambda ^2e^{-\lambda x} =C1λ2eλx+C2λ2e−λx−C1λ2eλx−C2λ2e−λx
= 0 =0 =0
- 验证函数 y = e x s i n x y=e^xsinx y=exsinx 满足关系式 y ′ ′ − 2 y ′ + 2 y = 0 y''-2y'+2y=0 y′′−2y′+2y=0.
-
解:
y ′ = e x s i n x + e x c o s x y'=e^xsinx+e^xcosx y′=exsinx+excosx
y ′ ′ = e x s i n x + e x c o s x + e x c o s x − e x s i n x y''=e^xsinx+e^xcosx+e^xcosx-e^xsinx y′′=exsinx+excosx+excosx−exsinx
= 2 e x c o s x =2e^xcosx =2excosx
y ′ ′ − 2 y ′ + 2 y y''-2y'+2y y′′−2y′+2y
= 2 e x c o s x − 2 e x s i n x − 2 e x c o s x + 2 e x s i n x =2e^xcosx-2e^xsinx-2e^xcosx+2e^xsinx =2excosx−2exsinx−2excosx+2exsinx
= 0 =0 =0
-
求下列函数所指定的阶的导数:
(1) y = e x c o s x y=e^xcosx y=excosx,求 y ( 4 ) y^{(4)} y(4)
(2) y = x 2 s i n 2 x y=x^2sin2x y=x2sin2x,求 y ( 50 ) y^{(50)} y(50)
-
解 (1):
根据莱布尼茨公式可得:
y ( 4 ) = C 4 0 ( e x ) ( 4 ) ( c o s x ) ( 0 ) + C 4 1 ( e x ) ( 3 ) ( c o s x ) ( 1 ) + C 4 2 ( e x ) ( 2 ) ( c o s x ) ( 2 ) + C 4 3 ( e x ) ( 1 ) ( c o s x ) ( 3 ) + C 4 4 ( e x ) ( 0 ) ( c o s x ) 4 y^{(4)}=C_4^0(e^x)^{(4)}(cosx)^{(0)}+C_4^1(e^x)^{(3)}(cosx)^{(1)}+C_4^2(e^x)^{(2)}(cosx)^{(2)}+C_4^3(e^x)^{(1)}(cosx)^{(3)}+C_4^4(e^x)^{(0)}(cosx)^{4} y(4)=C40(ex)(4)(cosx)(0)+C41(ex)(3)(cosx)(1)+C42(ex)(2)(cosx)(2)+C43(ex)(1)(cosx)(3)+C44(ex)(0)(cosx)4
= e x c o s x + 4 e x ( − s i n x ) + 6 e x ( − c o s x ) + 4 e x s i n x + e x c o s x =e^xcosx+4e^x(-sinx)+6e^x(-cosx)+4e^xsinx+e^xcosx =excosx+4ex(−sinx)+6ex(−cosx)+4exsinx+excosx
= − 4 e x c o s x =-4e^xcosx =−4excosx
-
解 (2):
根据莱布尼茨公式可得:
y ( 50 ) = ( x 2 s i n 2 x ) ( 50 ) y^{(50)}=(x^2sin2x)^{(50)} y(50)=(x2sin2x)(50)
= C 50 0 ( x 2 ) ( 0 ) ( s i n 2 x ) ( 50 ) + C 50 1 ( x 2 ) ( 1 ) ( s i n 2 x ) ( 49 ) + C 50 2 ( x 2 ) ( 2 ) ( s i n 2 x ) ( 48 ) + 0 + ⋯ + 0 =C_{50}^0(x^2)^{(0)}(sin2x)^{(50)}+C_{50}^1(x^2)^{(1)}(sin2x)^{(49)}+C_{50}^2(x^2)^{(2)}(sin2x)^{(48)}+0+\cdots + 0 =C500(x2)(0)(sin2x)(50)+C501(x2)(1)(sin2x)(49)+C502(x2)(2)(sin2x)(48)+0+⋯+0
= x 2 ⋅ 2 50 ⋅ s i n ( 2 x + 50 π 2 ) + 50 ⋅ 2 x ⋅ 2 49 ⋅ s i n ( 2 x + 49 π 2 ) + 1225 ⋅ 2 ⋅ 2 48 ⋅ s i n ( 2 x + 48 π 2 ) =x^2\cdot 2^{50}\cdot sin(2x+\frac{50\pi}{2})+50\cdot 2x\cdot 2^{49}\cdot sin(2x+\frac{49\pi}{2})+1225\cdot 2\cdot 2^{48}\cdot sin(2x+\frac{48\pi}{2}) =x2⋅250⋅sin(2x+250π)+50⋅2x⋅249⋅sin(2x+249π)+1225⋅2⋅248⋅sin(2x+248π)
= − 2 50 x 2 s i n 2 x + 50 ⋅ 2 50 x c o s 2 x + 2450 ⋅ 2 48 s i n 2 x =-2^{50}x^2sin2x+50\cdot 2^{50}xcos2x+2450\cdot 2^{48}sin2x =−250x2sin2x+50⋅250xcos2x+2450⋅248sin2x
- 求下列函数的 n n n 阶导数的一般表达式:
-
(1) y = x n + a 1 x n − 1 + a 2 x n − 2 + ⋯ + a n − 1 x + a n y=x^n+a_1x^{n-1}+a_2x^{n-2}+\cdots +a_{n-1}x+a_n y=xn+a1xn−1+a2xn−2+⋯+an−1x+an
y ( n ) = ( x n ) ( n ) + 0 ⋯ + 0 y^{(n)}=(x^n)^{(n)}+0\cdots + 0 y(n)=(xn)(n)+0⋯+0
= n ( n − 1 ) ( n − 2 ) ⋯ 2 ⋅ 1 =n(n-1)(n-2)\cdots 2\cdot 1 =n(n−1)(n−2)⋯2⋅1
= n ! =n! =n!
-
(2) y = s i n 2 x y=sin^2x y=sin2x
y ′ = 2 s i n x c o s x = s i n 2 x y'=2sinxcosx=sin2x y′=2sinxcosx=sin2x
根据第10(2)题的规律:
y ( n ) = 2 n − 1 s i n [ 2 x + ( n − 1 ) π 2 ] y^{(n)}=2^{n-1}sin[2x+\frac{(n-1)\pi}{2}] y(n)=2n−1sin[2x+2(n−1)π]
-
(3) y = x l n x y=xlnx y=xlnx
根据莱布尼茨公式可得:
y ( n ) = C n 0 x ( 0 ) ( l n x ) ( n ) + C n 1 x ( 1 ) ( l n x ) ( n − 1 ) + 0 + ⋯ + 0 y^{(n)}=C_n^0x^{(0)}(lnx)^{(n)}+C_n^1x^{(1)}(lnx)^{(n-1)}+0+\cdots +0 y(n)=Cn0x(0)(lnx)(n)+Cn1x(1)(lnx)(n−1)+0+⋯+0
= x ( l n x ) ( n ) + n ( l n x ) ( n − 1 ) =x(lnx)^{(n)}+n(lnx)^{(n-1)} =x(lnx)(n)+n(lnx)(n−1)
∵ ( l n x ) ( 1 ) = 1 x \because (lnx)^{(1)}=\frac{1}{x} ∵(lnx)(1)=x1
( l n x ) ( 2 ) = − 1 x 2 (lnx)^{(2)}=-\frac{1}{x^2} (lnx)(2)=−x21
( l n x ) ( 3 ) = 2 x 3 (lnx)^{(3)}=\frac{2}{x^3} (lnx)(3)=x32
∴ ( l n x ) ( n ) = ( − 1 ) n + 1 ( n − 1 ) ! x n \therefore (lnx)^{(n)}=(-1)^{n+1}\frac{(n-1)!}{x^n} ∴(lnx)(n)=(−1)n+1xn(n−1)!
∴ y ( n ) = ( − 1 ) n − 1 ( n − 1 ) ! x n − 1 + ( − 1 ) n − 2 ( n − 2 ) ! n x n − 1 \therefore y^{(n)}=(-1)^{n-1}\frac{(n-1)!}{x^{n-1}}+(-1)^{n-2}\frac{(n-2)!n}{x^{n-1}} ∴y(n)=(−1)n−1xn−1(n−1)!+(−1)n−2xn−1(n−2)!n
= ( − 1 ) n ( n − 2 ) ! x n − 1 ( n ≥ 2 ) =\frac{(-1)^n(n-2)!}{x^{n-1}}(n\geq 2) =xn−1(−1)n(n−2)!(n≥2)
∴ y ( n ) = { l n x + 1 , n = 1 ( − 1 ) n ( n − 2 ) ! x n − 1 , n > 1 \therefore y^{(n)}=\begin{cases} lnx+1, &n=1\\\frac{(-1)^n(n-2)!}{x^{n-1}}, &n>1\end{cases} ∴y(n)={lnx+1,xn−1(−1)n(n−2)!,n=1n>1
-
(4) y = x e x y=xe^x y=xex
根据莱布尼茨公式可得:
y ( n ) = ( x e x ) ( n ) = C n 0 ( x ) ( 0 ) ( e x ) n + C n 1 ( x ) ( 1 ) ( e x ) 49 + 0 + ⋯ + 0 y^{(n)}=(xe^x)^{(n)}=C_n^0(x)^{(0)}(e^x)^{n}+C_n^1(x)^{(1)}(e^x)^{49}+0+\cdots +0 y(n)=(xex)(n)=Cn0(x)(0)(ex)n+Cn1(x)(1)(ex)49+0+⋯+0
= x e x + n e x =xe^x+ne^x =xex+nex
- 求函数 f ( x ) = x 2 l n ( 1 + x ) f(x)=x^2ln(1+x) f(x)=x2ln(1+x) 在 x = 0 x=0 x=0 处的 n n n 阶导数 f ( n ) ( 0 ) ( n ≥ 3 ) f^{(n)(0)}(n\geq 3) f(n)(0)(n≥3).
-
解:
根据莱布尼茨公式可得:
f ( n ) ( x ) = C n 0 ( x 2 ) ( 0 ) [ l n ( 1 + x ) ] ( n ) + C n 1 ( x 2 ) ( 1 ) [ l n ( 1 + x ) ] ( n − 1 ) + C n 2 ( x 2 ) ( 2 ) [ l n ( 1 + x ) ] ( n − 2 ) + 0 + ⋯ + 0 f^{(n)}(x)=C_n^0(x^2)^{(0)}[ln(1+x)]^{(n)}+C_n^1(x^2)^{(1)}[ln(1+x)]^{(n-1)}+C_n^2(x^2)^{(2)}[ln(1+x)]^{(n-2)}+0+\cdots +0 f(n)(x)=Cn0(x2)(0)[ln(1+x)](n)+Cn1(x2)(1)[ln(1+x)](n−1)+Cn2(x2)(2)[ln(1+x)](n−2)+0+⋯+0
根据第11(3)题的规律可得:
f ( n ) ( x ) = x 2 ( − 1 ) n + 1 ( n − 1 ) ! ( 1 + x ) n + n ⋅ 2 x ( − 1 ) n ( n − 2 ) ! ( 1 + x ) n − 1 + n ( n − 1 ) 2 ⋅ 2 ⋅ ( − 1 ) n − 1 ( n − 3 ) ! ( 1 + x ) n − 2 ( n ≥ 3 ) f^{(n)}(x)=x^2(-1)^{n+1}\frac{(n-1)!}{(1+x)^n}+n\cdot 2x\frac{(-1)^n(n-2)!}{(1+x)^{n-1}}+\frac{n(n-1)}{2}\cdot 2\cdot \frac{(-1)^{n-1}(n-3)!}{(1+x)^{n-2}}(n\geq 3) f(n)(x)=x2(−1)n+1(1+x)n(n−1)!+n⋅2x(1+x)n−1(−1)n(n−2)!+2n(n−1)⋅2⋅(1+x)n−2(−1)n−1(n−3)!(n≥3)
f ( n ) ( 0 ) = ( − 1 ) n − 1 n ! n − 2 ( n ≥ 3 ) f^{(n)}(0)=\frac{(-1)^{n-1}n!}{n-2}(n\geq 3) f(n)(0)=n−2(−1)n−1n!(n≥3)
- 学习资料
1.《高等数学(第六版)》 上册,同济大学数学系 编
- 感谢您的关注,更欢迎您的批评和指正!