超子物联网 HAL库学习 汇总入口:
超子物联网HAL库笔记:[汇总]
写作不易,如果您觉得写的不错,欢迎给博主来一波点赞、收藏~让博主更有动力吧!
一、资源介绍:STM32F103C8T6定时器资源介绍
高级定时器(TIM1)
- 时基单元包含:
- 计数器寄存器(TIMx_CNT)
- 预分频器寄存器(TIMx_PSC)
- 自动装载寄存器(TIMx_ARR)
- 重复次数寄存器(TIMx_RCR)
通用定时器(TIM2、TIM3、TIM4)
- 时基单元包含:
- 计数器寄存器(TIMx_CNT)
- 预分频器寄存器(TIMx_PSC)
- 自动装载寄存器(TIMx_ARR)
定时器 1 通道
- **通道 1:**PA8、 DMA1_Channel2
- **通道 2:**PA9、 DMA1_Channel3
- **通道 3:**PA10、 DMA1_Channel6
- **通道 4:**PA11、 DMA1_Channel4
- **通道 ETR:**PA12
- 刹车: PB12、PA6(重映射)
- 通道 1 互补:PB13、PA7(重映射)
- 通道 2 互补:PB14、PB0(重映射)
- 通道 3 互补:PB15、PB1(重映射)
定时器 2 通道
- 通道 1:PA0(重映射 PA15)、PA1(重映射 PB3)
- 通道 2:PA2(重映射 PB10)
- 通道 3:DMA1_Channel5、DMA1_Channel7、DMA1_Channel1、DMA1_Channel7
- 通道 4:PA3(重映射 PB11)
- 通道 ETR:PA0(重映射 PA15)
定时器 3 通道
- 通道 1:PA6(重映射 PB4)、DMA1_Channel6、DMA1_Channel2、DMA1_Channel3
- 通道 2:PA7(重映射 PB5)
- 通道 3:PB0
- 通道 4:PB1
- 通道 ETR:无
定时器 4 通道
- 通道1:PB6 DMA1 Channel1
- 通道2:PB7 DMA1 Channel4
- 通道3:PB8 DMA1 Channel5
- 通道4:PB9
- 通道ETR:无
二、HAL库:TIM1234轮询方式 基础定时
1. 相关函数
-
TIM_HandleTypeDef
定时器总控结构体 -
HAL_TIM_Base_Init(&tim3);
轮询 初始化定时器 -
__HAL_TIM_CLEAR_FLAG(&tim3, TIM_FLAG_UPDATE);
清除更新标志位 -
HAL_TIM_Base_Start(&tim3);
开启定时器 -
void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim)
定时器DeInit回调函数 -
基础的初始化
-
void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim)
定时器Init回调函数 -
基础的初始化
void Timer1_Init(uint16_t arr, uint16_t psc, uint8_t rep) { tim1.Instance = TIM1; // 实例 tim1.Init.Period = arr; // 重装载值 tim1.Init.Prescaler = psc; // 分频系数 tim1.Init.CounterMode = TIM_COUNTERMODE_UP; // 计数模式 tim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // 分频因子 tim1.Init.RepetitionCounter = rep; // 重复计数值 tim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;// 自动重装载值 预装载使能位(影子寄存器) HAL_TIM_Base_Init(&tim1); //初始化定时器 __HAL_TIM_CLEAR_FLAG(&tim1, TIM_FLAG_UPDATE); //手动清除更新事件 HAL_TIM_Base_Start(&tim1); //打开定时器(轮询方式) }
-
主循环while判断
if(__HAL_TIM_GET_FLAG(&tim1, TIM_FLAG_UPDATE)){ __HAL_TIM_CLEAR_FLAG(&tim1, TIM_FLAG_UPDATE); ///清除标志位 U1_Printf("定时器 1 定时时间:%d\\r\\n",time1++); }
2. 程序
time.c
#include "stm32f1xx_hal.h"
#include "time.h"
TIM_HandleTypeDef tim1; //(高级)定时器1总控结构体
TIM_HandleTypeDef tim2;
TIM_HandleTypeDef tim3;
TIM_HandleTypeDef tim4;
//定时器 1
void Timer1_Init(uint16_t arr, uint16_t psc, uint8_t rep)
{
tim1.Instance = TIM1; // 实例
tim1.Init.Period = arr; // 重装载值
tim1.Init.Prescaler = psc; // 分频系数
tim1.Init.CounterMode = TIM_COUNTERMODE_UP; // 计数模式
tim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // 分频因子
tim1.Init.RepetitionCounter = rep; // 重复计数值
tim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;// 自动重装载值 预装载使能位(影子寄存器)
HAL_TIM_Base_Init(&tim1); //初始化定时器
__HAL_TIM_CLEAR_FLAG(&tim1, TIM_FLAG_UPDATE); //手动清除更新事件
HAL_TIM_Base_Start(&tim1); //打开定时器(轮询方式)
}
//定时器 2
void Timer2_Init(uint16_t arr, uint16_t psc)
{
tim2.Instance = TIM2;
tim2.Init.Period = arr;
tim2.Init.Prescaler = psc;
tim2.Init.CounterMode = TIM_COUNTERMODE_UP;
tim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
tim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
HAL_TIM_Base_Init(&tim2); //初始化定时器
__HAL_TIM_CLEAR_FLAG(&tim2, TIM_FLAG_UPDATE);
HAL_TIM_Base_Start(&tim2); //打开定时器(轮询方式)
}
//定时器 3
void Timer3_Init(uint16_t arr, uint16_t psc)
{
tim3.Instance = TIM3;
tim3.Init.Period = arr;
tim3.Init.Prescaler = psc;
tim3.Init.CounterMode = TIM_COUNTERMODE_UP;
tim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
tim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
HAL_TIM_Base_Init(&tim3);
__HAL_TIM_CLEAR_FLAG(&tim3, TIM_FLAG_UPDATE);
HAL_TIM_Base_Start(&tim3);
}
//定时器 4
void Timer4_Init(uint16_t arr, uint16_t psc)
{
tim4.Instance = TIM4;
tim4.Init.Period = arr;
tim4.Init.Prescaler = psc;
tim4.Init.CounterMode = TIM_COUNTERMODE_UP;
tim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
tim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
HAL_TIM_Base_Init(&tim4);
__HAL_TIM_CLEAR_FLAG(&tim4, TIM_FLAG_UPDATE);
HAL_TIM_Base_Start(&tim4);
}
//定时器 硬件初始化回调函数
void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim)
{
if(htim->Instance == TIM1){
__HAL_RCC_TIM1_CLK_ENABLE();
}else if(htim->Instance == TIM2){
__HAL_RCC_TIM2_CLK_ENABLE();
}else if(htim->Instance == TIM3){
__HAL_RCC_TIM3_CLK_ENABLE();
}else if(htim->Instance == TIM4){
__HAL_RCC_TIM4_CLK_ENABLE();
}
}
//定时器 De回调函数
void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim)
{
if(htim->Instance == TIM1){
__HAL_RCC_TIM1_CLK_DISABLE();
}else if(htim->Instance == TIM2){
__HAL_RCC_TIM1_CLK_DISABLE();
}else if(htim->Instance == TIM3){
__HAL_RCC_TIM1_CLK_DISABLE();
}else if(htim->Instance == TIM4){
__HAL_RCC_TIM1_CLK_DISABLE();
}
}
time.h
#ifndef __TIME_H
#define __TIME_H
/* 对外声明总控结构体 */
extern TIM_HandleTypeDef tim1;
extern TIM_HandleTypeDef tim2;
extern TIM_HandleTypeDef tim3;
extern TIM_HandleTypeDef tim4;
/* 初始化函数 */
void Timer1_Init(uint16_t arr, uint16_t psc, uint8_t rep);
void Timer2_Init(uint16_t arr, uint16_t psc);
void Timer3_Init(uint16_t arr, uint16_t psc);
void Timer4_Init(uint16_t arr, uint16_t psc);
#endif
main.c
#include "stm32f1xx_hal.h"
#include "rcc.h"
#include "led.h"
#include "sw.h"
#include "uart.h"
#include "time.h"
int main(void){
HAL_Init();
RccClock_Init();
U1_Init(921600);
Timer1_Init(20000 - 1, 3600 - 1, 4 - 1); // 72000000/3600/20000 = 1 * 4 = 4s
Timer2_Init(30000 - 1, 7200 - 1); // 3s
Timer3_Init(20000 - 1, 7200 - 1); // 2s
Timer4_Init(10000 - 1, 7200 - 1); // 1s
uint16_t time1 = 1;
uint16_t time2 = 1;
uint16_t time3 = 1;
uint16_t time4 = 1;
while(1){
/* 获取更新标志位 */
if(__HAL_TIM_GET_FLAG(&tim1, TIM_FLAG_UPDATE)){
__HAL_TIM_CLEAR_FLAG(&tim1, TIM_FLAG_UPDATE); ///清除标志位
U1_Printf("定时器 1 定时时间:%d\\r\\n",time1++);
if(time1 > 5){
U1_Printf("定时器 1 关闭\\r\\n");
HAL_TIM_Base_Stop(&tim1); //停止定时器
HAL_TIM_Base_DeInit(&tim1); //释放
}
}
if(__HAL_TIM_GET_FLAG(&tim2, TIM_FLAG_UPDATE)){
__HAL_TIM_CLEAR_FLAG(&tim2, TIM_FLAG_UPDATE);
U1_Printf("定时器 2 定时时间:%d\\r\\n",time2++);
}
if(__HAL_TIM_GET_FLAG(&tim3, TIM_FLAG_UPDATE)){
__HAL_TIM_CLEAR_FLAG(&tim3, TIM_FLAG_UPDATE);
U1_Printf("定时器 3 定时时间:%d\\r\\n",time3++);
}
if(__HAL_TIM_GET_FLAG(&tim4, TIM_FLAG_UPDATE)){
__HAL_TIM_CLEAR_FLAG(&tim4, TIM_FLAG_UPDATE);
U1_Printf("定时器 4 定时时间:%d\\r\\n",time4++);
}
}
}
三、解释:定时器初始化后 立刻产生的更新事件 是哪里来的
哪里来的更新事件:
来源于HAL_TIM_Base_Init(&tim1);
初始化定时器基础配置函数中 TIM_Base_SetConfig
函数中的最后一行: TIMx->EGR = TIM_EGR_UG;
这里HAL库人为的 更新了一下EGR寄存器的Ug位,也就是事件产生寄存器为1。
为什么要在初始化的时候更新一下事件:
原因是因为 定时器中的 PSC 和重复计数器Rep(这个是高级定时器才有)
只有在一次更新事件之后才会彻底写入(影子寄存器)
ARR虽然也有影子寄存器。但是他不管是在关闭还是开启的状态下,只要设置就能直接转正(写入)。
如何避免复位后直接产生更新事件?
在Start之前,手动清除UIF位
四、HAL库:TIM1234中断方式 基础定时
在轮询基础上,配置和开启了中断。
这里需要大概知道 需要定义 定时器的更新回调函数
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
注意开启定时器使用挂it方式的就ok ..
然后在对应的中断函数中处理就ok
2. 程序
time.c
#include "stm32f1xx_hal.h"
#include "time.h"
TIM_HandleTypeDef tim1; //(高级)定时器1总控结构体
TIM_HandleTypeDef tim2;
TIM_HandleTypeDef tim3;
TIM_HandleTypeDef tim4;
//定时器 1
void Timer1_Init(uint16_t arr, uint16_t psc, uint8_t rep)
{
tim1.Instance = TIM1; // 实例
tim1.Init.Period = arr; // 重装载值
tim1.Init.Prescaler = psc; // 分频系数
tim1.Init.CounterMode = TIM_COUNTERMODE_UP; // 计数模式
tim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // 分频因子
tim1.Init.RepetitionCounter = rep; // 重复计数值
tim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;// 自动重装载值 预装载使能位(影子寄存器)
HAL_TIM_Base_Init(&tim1); //初始化定时器
__HAL_TIM_CLEAR_FLAG(&tim1, TIM_FLAG_UPDATE); //手动清除更新事件
HAL_TIM_Base_Start_IT(&tim1); //打开定时器(IT方式)
}
//定时器 2
void Timer2_Init(uint16_t arr, uint16_t psc)
{
tim2.Instance = TIM2;
tim2.Init.Period = arr;
tim2.Init.Prescaler = psc;
tim2.Init.CounterMode = TIM_COUNTERMODE_UP;
tim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
tim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
HAL_TIM_Base_Init(&tim2);
__HAL_TIM_CLEAR_FLAG(&tim2, TIM_FLAG_UPDATE);
HAL_TIM_Base_Start_IT(&tim2);
}
//定时器 3
void Timer3_Init(uint16_t arr, uint16_t psc)
{
tim3.Instance = TIM3;
tim3.Init.Period = arr;
tim3.Init.Prescaler = psc;
tim3.Init.CounterMode = TIM_COUNTERMODE_UP;
tim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
tim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
HAL_TIM_Base_Init(&tim3);
__HAL_TIM_CLEAR_FLAG(&tim3, TIM_FLAG_UPDATE);
HAL_TIM_Base_Start_IT(&tim3);
}
//定时器 4
void Timer4_Init(uint16_t arr, uint16_t psc)
{
tim4.Instance = TIM4;
tim4.Init.Period = arr;
tim4.Init.Prescaler = psc;
tim4.Init.CounterMode = TIM_COUNTERMODE_UP;
tim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
tim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
HAL_TIM_Base_Init(&tim4);
__HAL_TIM_CLEAR_FLAG(&tim4, TIM_FLAG_UPDATE);
HAL_TIM_Base_Start_IT(&tim4);
}
//定时器 硬件初始化回调函数
void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim)
{
if(htim->Instance == TIM1){
__HAL_RCC_TIM1_CLK_ENABLE(); //使能时钟
HAL_NVIC_SetPriority(TIM1_UP_IRQn, 3, 0); //配置、打开 更新中断
HAL_NVIC_EnableIRQ(TIM1_UP_IRQn);
}else if(htim->Instance == TIM2){
__HAL_RCC_TIM2_CLK_ENABLE();
HAL_NVIC_SetPriority(TIM2_IRQn, 3, 0);
HAL_NVIC_EnableIRQ(TIM2_IRQn);
}else if(htim->Instance == TIM3){
__HAL_RCC_TIM3_CLK_ENABLE();
HAL_NVIC_SetPriority(TIM3_IRQn, 3, 0);
HAL_NVIC_EnableIRQ(TIM3_IRQn);
}else if(htim->Instance == TIM4){
__HAL_RCC_TIM4_CLK_ENABLE();
HAL_NVIC_SetPriority(TIM4_IRQn, 3, 0);
HAL_NVIC_EnableIRQ(TIM4_IRQn);
}
}
uint16_t time1 = 1;
uint16_t time2 = 1;
uint16_t time3 = 1;
uint16_t time4 = 1;
//更新中断 回调函数
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
if(htim->Instance == TIM1){
U1_Printf("定时器 1 定时时间:%d\\r\\n",time1++);
}else if(htim->Instance == TIM2){
U1_Printf("定时器 2 定时时间:%d\\r\\n",time2++);
}else if(htim->Instance == TIM3){
U1_Printf("定时器 3 定时时间:%d\\r\\n",time3++);
}else if(htim->Instance == TIM4){
U1_Printf("定时器 4 定时时间:%d\\r\\n",time4++);
}
}
//定时器 硬件De初始化回调函数
void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim)
{
if(htim->Instance == TIM1){
__HAL_RCC_TIM1_CLK_DISABLE();
}else if(htim->Instance == TIM2){
__HAL_RCC_TIM2_CLK_DISABLE();
}else if(htim->Instance == TIM3){
__HAL_RCC_TIM3_CLK_DISABLE();
}else if(htim->Instance == TIM4){
__HAL_RCC_TIM4_CLK_DISABLE();
}
}
time.h
#ifndef __TIME_H
#define __TIME_H
#include "uart.h"
/* 对外声明总控结构体 */
extern TIM_HandleTypeDef tim1;
extern TIM_HandleTypeDef tim2;
extern TIM_HandleTypeDef tim3;
extern TIM_HandleTypeDef tim4;
/* 初始化函数 */
void Timer1_Init(uint16_t arr, uint16_t psc, uint8_t rep);
void Timer2_Init(uint16_t arr, uint16_t psc);
void Timer3_Init(uint16_t arr, uint16_t psc);
void Timer4_Init(uint16_t arr, uint16_t psc);
#endif
stm32f1xx_it.c
/*-------------------------------------------------*/
/* */
/* 实现各种中断服务函数的源文件 */
/* */
/*-------------------------------------------------*/
#include "stm32f1xx_hal.h"
#include "stm32f1xx_it.h"
#include "uart.h"
#include "time.h"
//定时器相关
void TIM1_UP_IRQHandler(void)
{
HAL_TIM_IRQHandler(&tim1);
}
void TIM2_IRQHandler(void)
{
HAL_TIM_IRQHandler(&tim2);
}
void TIM3_IRQHandler(void)
{
HAL_TIM_IRQHandler(&tim3);
}
void TIM4_IRQHandler(void)
{
HAL_TIM_IRQHandler(&tim4);
}
//其他
void EXTI15_10_IRQHandler(void)
{
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_14);
}
void EXTI0_IRQHandler(void)
{
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);
}
void USART1_IRQHandler(void)
{
HAL_UART_IRQHandler(&uart1.uart);
if(__HAL_UART_GET_FLAG(&uart1.uart, UART_FLAG_IDLE)){
__HAL_UART_CLEAR_IDLEFLAG(&uart1.uart);
uart1.RxCounter += (U1_RX_MAX - __HAL_DMA_GET_COUNTER(&uart1.dmarx));
HAL_UART_AbortReceive_IT(&uart1.uart);
}
}
void USART2_IRQHandler(void)
{
HAL_UART_IRQHandler(&uart2.uart);
if(__HAL_UART_GET_FLAG(&uart2.uart, UART_FLAG_IDLE)){
__HAL_UART_CLEAR_IDLEFLAG(&uart2.uart);
uart2.RxCounter += (U2_RX_MAX - __HAL_DMA_GET_COUNTER(&uart2.dmarx));
HAL_UART_AbortReceive_IT(&uart2.uart);
}
}
void USART3_IRQHandler(void)
{
HAL_UART_IRQHandler(&uart3.uart);
if(__HAL_UART_GET_FLAG(&uart3.uart, UART_FLAG_IDLE)){
__HAL_UART_CLEAR_IDLEFLAG(&uart3.uart);
uart3.RxCounter += (U3_RX_MAX - __HAL_DMA_GET_COUNTER(&uart3.dmarx));
HAL_UART_AbortReceive_IT(&uart3.uart);
}
}
void DMA1_Channel4_IRQHandler(void)
{
HAL_DMA_IRQHandler(&uart1.dmatx);
}
void DMA1_Channel5_IRQHandler(void)
{
HAL_DMA_IRQHandler(&uart1.dmarx);
}
void DMA1_Channel7_IRQHandler(void)
{
HAL_DMA_IRQHandler(&uart2.dmatx);
}
void DMA1_Channel6_IRQHandler(void)
{
HAL_DMA_IRQHandler(&uart2.dmarx);
}
void DMA1_Channel2_IRQHandler(void)
{
HAL_DMA_IRQHandler(&uart3.dmatx);
}
void DMA1_Channel3_IRQHandler(void)
{
HAL_DMA_IRQHandler(&uart3.dmarx);
}
/*-------------------------------------------------*/
/*函数名:不可屏蔽中断处理函数 */
/*参 数:无 */
/*返回值:无 */
/*-------------------------------------------------*/
void NMI_Handler(void)
{
}
/*-------------------------------------------------*/
/*函数名:硬件出错后进入的中断处理函数 */
/*参 数:无 */
/*返回值:无 */
/*-------------------------------------------------*/
void HardFault_Handler(void)
{
}
/*-------------------------------------------------*/
/*函数名:软中断,SWI 指令调用的处理函数 */
/*参 数:无 */
/*返回值:无 */
/*-------------------------------------------------*/
void SVC_Handler(void)
{
}
/*-------------------------------------------------*/
/*函数名:可挂起的系统服务处理函数 */
/*参 数:无 */
/*返回值:无 */
/*-------------------------------------------------*/
void PendSV_Handler(void)
{
}
/*-------------------------------------------------*/
/*函数名:SysTic系统嘀嗒定时器处理函数 */
/*参 数:无 */
/*返回值:无 */
/*-------------------------------------------------*/
void SysTick_Handler(void)
{
HAL_IncTick();
}
main.c
#include "stm32f1xx_hal.h"
#include "rcc.h"
#include "led.h"
#include "sw.h"
#include "uart.h"
#include "time.h"
int main(void){
HAL_Init();
RccClock_Init();
U1_Init(921600);
Timer1_Init(20000 - 1, 3600 - 1, 4 - 1); // 72000000/3600/20000 = 1 * 4 = 4s
Timer2_Init(30000 - 1, 7200 - 1); // 3s
Timer3_Init(20000 - 1, 7200 - 1); // 2s
Timer4_Init(10000 - 1, 7200 - 1); // 1s
// uint16_t time1 = 0;
// uint16_t time2 = 0;
// uint16_t time3 = 0;
// uint16_t time4 = 0;
while(1){
/* 获取更新标志位 */
// if(__HAL_TIM_GET_FLAG(&tim1, TIM_FLAG_UPDATE)){
// __HAL_TIM_CLEAR_FLAG(&tim1, TIM_FLAG_UPDATE); ///清除标志位
// U1_Printf("定时器 1 定时时间:%d\\r\\n",time1++);
// }
//
// if(__HAL_TIM_GET_FLAG(&tim2, TIM_FLAG_UPDATE)){
// __HAL_TIM_CLEAR_FLAG(&tim2, TIM_FLAG_UPDATE);
// U1_Printf("定时器 2 定时时间:%d\\r\\n",time2++);
// }
//
// if(__HAL_TIM_GET_FLAG(&tim3, TIM_FLAG_UPDATE)){
// __HAL_TIM_CLEAR_FLAG(&tim3, TIM_FLAG_UPDATE);
// U1_Printf("定时器 3 定时时间:%d\\r\\n",time3++);
// }
//
// if(__HAL_TIM_GET_FLAG(&tim4, TIM_FLAG_UPDATE)){
// __HAL_TIM_CLEAR_FLAG(&tim4, TIM_FLAG_UPDATE);
// U1_Printf("定时器 4 定时时间:%d\\r\\n",time4++);
// }
}
}
五、HAL库:TIM1234 DMA单次方式 改变定时时间
1. 如何做到改变定时时间
更新DMA事件可以改变ARR重载值,从而改变基础定时时间
2. 实验现象
DMA单次方式,传输4次数据,改变定时时间:第一次定时1s,第二次定时2s,第三次定时3s,第四次定时4s第五次定时5s,然后以后一直都是5s
3. 注意
-
DMA有半完成回调 和 完成回调
- 其中完成回调,和定时器更新回调的函数是一个函数
- 所以,如果要使用更新中断和DMA完成中断,则需要判断一下。
- 方法:通过判断DMA的状态,如果为Busy,则说明是更新中断进入的 定时器更新回调函数
-
DMA方式的定时器并不会开启更新中断,所以要手动打开更新中断
-
DMA使用数 要注意通道的重复使用。避免重复。
-
LinkDMA时,第二个参数的 外设句柄内的一个DMA句柄指针(可以理解为通道绑定),可以在这里直接看到他的所有成员。在用时,可以这样用
__HAL_LINKDMA(&tim1, **hdma[TIM_DMA_ID_UPDATE]**, &tim1_dmaup);
- /* 判断DMA是否为Ready状态,如果是则是DMA完成中断进入的回调函数 */
if(htim->hdma[TIM_DMA_ID_UPDATE]->State == HAL_DMA_STATE_READY){
-
DMA在Link TIM和DMA的某通道之后,可以直接在TIM中找到通道的配置总控结构体
4. 相关函数
TIM_HandleTypeDef
定时器总控结构体DMA_HandleTypeDef
DMA总控结构体__HAL_TIM_CLEAR_FLAG
****清除标志位__HAL_TIM_ENABLE_IT
使能中断HAL_TIM_Base_Start_DMA
DMA方式启动定时器__HAL_LINKDMA
DMA LINK
4. 程序
time.c
#include "stm32f1xx_hal.h"
#include "time.h"
TIM_HandleTypeDef tim1; //(高级)定时器1总控结构体
TIM_HandleTypeDef tim2;
TIM_HandleTypeDef tim3;
TIM_HandleTypeDef tim4;
DMA_HandleTypeDef tim1_dmaup;
DMA_HandleTypeDef tim2_dmaup;
DMA_HandleTypeDef tim3_dmaup;
DMA_HandleTypeDef tim4_dmaup;
uint16_t tim1_dmaBuff[4] = {20000, 30000, 40000, 50000};
uint16_t tim2_dmaBuff[4] = {20000, 30000, 40000, 50000};
uint16_t tim3_dmaBuff[4] = {20000, 30000, 40000, 50000};
uint16_t tim4_dmaBuff[4] = {20000, 30000, 40000, 50000};
//定时器 1
void Timer1_Init(uint16_t arr, uint16_t psc, uint8_t rep)
{
tim1.Instance = TIM1; // 实例
tim1.Init.Period = arr; // 重装载值
tim1.Init.Prescaler = psc; // 分频系数
tim1.Init.CounterMode = TIM_COUNTERMODE_UP; // 计数模式
tim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // 分频因子
tim1.Init.RepetitionCounter = rep; // 重复计数值
tim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;// 自动重装载值 预装载使能位(影子寄存器)
HAL_TIM_Base_Init(&tim1); //初始化定时器
__HAL_TIM_CLEAR_FLAG(&tim1, TIM_FLAG_UPDATE); //手动 清除 定时器 更新事件
__HAL_TIM_ENABLE_IT(&tim1, TIM1_UP_IRQn); //手动 使能 定时器 更新中断
HAL_TIM_Base_Start_DMA(&tim1, (uint32_t*)tim1_dmaBuff, 4); //打开定时器(DMA方式)
}
//定时器 2
void Timer2_Init(uint16_t arr, uint16_t psc)
{
tim2.Instance = TIM2;
tim2.Init.Period = arr;
tim2.Init.Prescaler = psc;
tim2.Init.CounterMode = TIM_COUNTERMODE_UP;
tim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
tim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
HAL_TIM_Base_Init(&tim2);
__HAL_TIM_CLEAR_FLAG(&tim2, TIM_FLAG_UPDATE);
__HAL_TIM_ENABLE_IT(&tim2, TIM1_UP_IRQn);
HAL_TIM_Base_Start_DMA(&tim2, (uint32_t*)tim2_dmaBuff, 4);
}
//定时器 3
void Timer3_Init(uint16_t arr, uint16_t psc)
{
tim3.Instance = TIM3;
tim3.Init.Period = arr;
tim3.Init.Prescaler = psc;
tim3.Init.CounterMode = TIM_COUNTERMODE_UP;
tim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
tim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
HAL_TIM_Base_Init(&tim3);
__HAL_TIM_CLEAR_FLAG(&tim3, TIM_FLAG_UPDATE);
__HAL_TIM_ENABLE_IT(&tim3, TIM1_UP_IRQn);
HAL_TIM_Base_Start_DMA(&tim3, (uint32_t*)tim3_dmaBuff, 4);
}
//定时器 4
void Timer4_Init(uint16_t arr, uint16_t psc)
{
tim4.Instance = TIM4;
tim4.Init.Period = arr;
tim4.Init.Prescaler = psc;
tim4.Init.CounterMode = TIM_COUNTERMODE_UP;
tim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
tim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
HAL_TIM_Base_Init(&tim4);
__HAL_TIM_CLEAR_FLAG(&tim4, TIM_FLAG_UPDATE);
__HAL_TIM_ENABLE_IT(&tim4, TIM1_UP_IRQn);
HAL_TIM_Base_Start_DMA(&tim4, (uint32_t*)tim4_dmaBuff, 4);
}
//定时器 硬件初始化回调函数
void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim)
{
if(htim->Instance == TIM1){
__HAL_RCC_TIM1_CLK_ENABLE(); //使能时钟
__HAL_RCC_DMA1_CLK_ENABLE();
HAL_NVIC_SetPriority(TIM1_UP_IRQn, 3, 0); //配置、打开 更新中断
HAL_NVIC_EnableIRQ(TIM1_UP_IRQn);
/* DMA配置 */
tim1_dmaup.Instance = DMA1_Channel5;
tim1_dmaup.Init.Direction = DMA_MEMORY_TO_PERIPH; //存储区到外设
tim1_dmaup.Init.MemInc = DMA_MINC_ENABLE; //存储区递增
tim1_dmaup.Init.PeriphInc = DMA_PINC_DISABLE; //外设不递增
tim1_dmaup.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD; //半字 2字节
tim1_dmaup.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
tim1_dmaup.Init.Mode = DMA_NORMAL; //单次模式
tim1_dmaup.Init.Priority = DMA_PRIORITY_MEDIUM;
__HAL_LINKDMA(&tim1, hdma[TIM_DMA_ID_UPDATE], tim1_dmaup);
HAL_DMA_Init(&tim1_dmaup);
HAL_NVIC_SetPriority(DMA1_Channel5_IRQn, 3, 0); //配置、打开 通道5的中断
HAL_NVIC_EnableIRQ(DMA1_Channel5_IRQn);
}else if(htim->Instance == TIM2){
__HAL_RCC_TIM2_CLK_ENABLE();
__HAL_RCC_DMA1_CLK_ENABLE();
HAL_NVIC_SetPriority(TIM2_IRQn, 3, 0);
HAL_NVIC_EnableIRQ(TIM2_IRQn);
/* DMA配置 */
tim2_dmaup.Instance = DMA1_Channel2;
tim2_dmaup.Init.Direction = DMA_MEMORY_TO_PERIPH; //存储区到外设
tim2_dmaup.Init.MemInc = DMA_MINC_ENABLE; //存储区递增
tim2_dmaup.Init.PeriphInc = DMA_PINC_DISABLE; //外设不递增
tim2_dmaup.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD; //半字 2字节
tim2_dmaup.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
tim2_dmaup.Init.Mode = DMA_NORMAL; //单次模式
tim2_dmaup.Init.Priority = DMA_PRIORITY_MEDIUM;
__HAL_LINKDMA(&tim2, hdma[TIM_DMA_ID_UPDATE], tim2_dmaup);
HAL_DMA_Init(&tim2_dmaup);
HAL_NVIC_SetPriority(DMA1_Channel2_IRQn, 3, 0); //配置、打开 通道5的中断
HAL_NVIC_EnableIRQ(DMA1_Channel2_IRQn);
}else if(htim->Instance == TIM3){
__HAL_RCC_TIM3_CLK_ENABLE();
__HAL_RCC_DMA1_CLK_ENABLE();
HAL_NVIC_SetPriority(TIM3_IRQn, 3, 0);
HAL_NVIC_EnableIRQ(TIM3_IRQn);
/* DMA配置 */
tim3_dmaup.Instance = DMA1_Channel3;
tim3_dmaup.Init.Direction = DMA_MEMORY_TO_PERIPH; //存储区到外设
tim3_dmaup.Init.MemInc = DMA_MINC_ENABLE; //存储区递增
tim3_dmaup.Init.PeriphInc = DMA_PINC_DISABLE; //外设不递增
tim3_dmaup.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD; //半字 2字节
tim3_dmaup.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
tim3_dmaup.Init.Mode = DMA_NORMAL; //单次模式
tim3_dmaup.Init.Priority = DMA_PRIORITY_MEDIUM;
__HAL_LINKDMA(&tim3, hdma[TIM_DMA_ID_UPDATE], tim3_dmaup);
HAL_DMA_Init(&tim3_dmaup);
HAL_NVIC_SetPriority(DMA1_Channel3_IRQn, 3, 0); //配置、打开 通道5的中断
HAL_NVIC_EnableIRQ(DMA1_Channel3_IRQn);
}else if(htim->Instance == TIM4){
__HAL_RCC_TIM4_CLK_ENABLE();
__HAL_RCC_DMA1_CLK_ENABLE();
HAL_NVIC_SetPriority(TIM4_IRQn, 3, 0);
HAL_NVIC_EnableIRQ(TIM4_IRQn);
/* DMA配置 */
tim4_dmaup.Instance = DMA1_Channel7;
tim4_dmaup.Init.Direction = DMA_MEMORY_TO_PERIPH; //存储区到外设
tim4_dmaup.Init.MemInc = DMA_MINC_ENABLE; //存储区递增
tim4_dmaup.Init.PeriphInc = DMA_PINC_DISABLE; //外设不递增
tim4_dmaup.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD; //半字 2字节
tim4_dmaup.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
tim4_dmaup.Init.Mode = DMA_NORMAL; //单次模式
tim4_dmaup.Init.Priority = DMA_PRIORITY_MEDIUM;
__HAL_LINKDMA(&tim4, hdma[TIM_DMA_ID_UPDATE], tim4_dmaup);
HAL_DMA_Init(&tim4_dmaup);
HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 3, 0); //配置、打开 通道5的中断
HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn);
}
}
//定时器 硬件 De 回调函数
void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim)
{
if(htim->Instance == TIM1){
__HAL_RCC_TIM1_CLK_DISABLE();
}else if(htim->Instance == TIM2){
__HAL_RCC_TIM2_CLK_DISABLE();
}else if(htim->Instance == TIM3){
__HAL_RCC_TIM3_CLK_DISABLE();
}else if(htim->Instance == TIM4){
__HAL_RCC_TIM4_CLK_DISABLE();
}
}
//更新中断 回调函数(同时也是DMA完成的回调函数)
uint16_t time1 = 1;
uint16_t time2 = 1;
uint16_t time3 = 1;
uint16_t time4 = 1;
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
if(htim->Instance == TIM1){
/* 判断DMA是否为Ready状态,如果是则是DMA完成中断进入的回调函数 */
if(htim->hdma[TIM_DMA_ID_UPDATE]->State == HAL_DMA_STATE_READY){
U1_Printf("DMA1 完成中断\\r\\n");
HAL_DMA_DeInit(htim->hdma[TIM_DMA_ID_UPDATE]); //关闭DMA
}else{
U1_Printf("定时器 1 定时时间:%d\\r\\n",time1++);
if(time1 >= 6){ //大于等于6 则关闭
U1_Printf("定时器1 关闭\\r\\n");
HAL_TIM_Base_Stop_DMA(htim);
HAL_TIM_Base_DeInit(htim);
}
}
}else if(htim->Instance == TIM2){
if(htim->hdma[TIM_DMA_ID_UPDATE]->State == HAL_DMA_STATE_READY){
U1_Printf("DMA2 完成中断\\r\\n");
HAL_DMA_DeInit(htim->hdma[TIM_DMA_ID_UPDATE]); //关闭DMA
}else{
U1_Printf("定时器 2 定时时间:%d\\r\\n",time2++);
if(time2 >= 6){ //大于等于6 则关闭
U1_Printf("定时器2 关闭\\r\\n");
HAL_TIM_Base_Stop_DMA(htim);
HAL_TIM_Base_DeInit(htim);
}
}
}else if(htim->Instance == TIM3){
if(htim->hdma[TIM_DMA_ID_UPDATE]->State == HAL_DMA_STATE_READY){
U1_Printf("DMA3 完成中断\\r\\n");
HAL_DMA_DeInit(htim->hdma[TIM_DMA_ID_UPDATE]); //关闭DMA
}else{
U1_Printf("定时器 3 定时时间:%d\\r\\n",time3++);
if(time3 >= 6){ //大于等于6 则关闭
U1_Printf("定时器3 关闭\\r\\n");
HAL_TIM_Base_Stop_DMA(htim);
HAL_TIM_Base_DeInit(htim);
}
}
}else if(htim->Instance == TIM4){
if(htim->hdma[TIM_DMA_ID_UPDATE]->State == HAL_DMA_STATE_READY){
U1_Printf("DMA4 完成中断\\r\\n");
HAL_DMA_DeInit(htim->hdma[TIM_DMA_ID_UPDATE]); //关闭DMA
}else{
U1_Printf("定时器 4 定时时间:%d\\r\\n",time4++);
if(time4 >= 6){ //大于等于6 则关闭
U1_Printf("定时器4 关闭\\r\\n");
HAL_TIM_Base_Stop_DMA(htim);
HAL_TIM_Base_DeInit(htim);
}
}
}
}
//DMA 半完成回调函数
void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim)
{
if(htim->Instance == TIM1){
U1_Printf("定时器 1 DMA半完成中断\\r\\n");
}else if(htim->Instance == TIM2){
U1_Printf("定时器 2 DMA半完成中断\\r\\n");
}else if(htim->Instance == TIM3){
U1_Printf("定时器 3 DMA半完成中断\\r\\n");
}else if(htim->Instance == TIM4){
U1_Printf("定时器 4 DMA半完成中断\\r\\n");
}
}
time.h
#ifndef __TIME_H
#define __TIME_H
#include "uart.h"
/* 对外声明总控结构体 */
extern TIM_HandleTypeDef tim1;
extern TIM_HandleTypeDef tim2;
extern TIM_HandleTypeDef tim3;
extern TIM_HandleTypeDef tim4;
extern DMA_HandleTypeDef tim1_dmaup;
extern DMA_HandleTypeDef tim2_dmaup;
extern DMA_HandleTypeDef tim3_dmaup;
extern DMA_HandleTypeDef tim4_dmaup;
/* 初始化函数 */
void Timer1_Init(uint16_t arr, uint16_t psc, uint8_t rep);
void Timer2_Init(uint16_t arr, uint16_t psc);
void Timer3_Init(uint16_t arr, uint16_t psc);
void Timer4_Init(uint16_t arr, uint16_t psc);
#endif
stm32f1xx_it.c
/*-------------------------------------------------*/
/* */
/* 实现各种中断服务函数的源文件 */
/* */
/*-------------------------------------------------*/
#include "stm32f1xx_hal.h"
#include "stm32f1xx_it.h"
#include "uart.h"
#include "time.h"
void EXTI15_10_IRQHandler(void)
{
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_14);
}
void EXTI0_IRQHandler(void)
{
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);
}
void USART1_IRQHandler(void)
{
HAL_UART_IRQHandler(&uart1.uart);
if(__HAL_UART_GET_FLAG(&uart1.uart, UART_FLAG_IDLE)){
__HAL_UART_CLEAR_IDLEFLAG(&uart1.uart);
uart1.RxCounter += (U1_RX_MAX - __HAL_DMA_GET_COUNTER(&uart1.dmarx));
HAL_UART_AbortReceive_IT(&uart1.uart);
}
}
void USART2_IRQHandler(void)
{
HAL_UART_IRQHandler(&uart2.uart);
if(__HAL_UART_GET_FLAG(&uart2.uart, UART_FLAG_IDLE)){
__HAL_UART_CLEAR_IDLEFLAG(&uart2.uart);
uart2.RxCounter += (U2_RX_MAX - __HAL_DMA_GET_COUNTER(&uart2.dmarx));
HAL_UART_AbortReceive_IT(&uart2.uart);
}
}
void USART3_IRQHandler(void)
{
HAL_UART_IRQHandler(&uart3.uart);
if(__HAL_UART_GET_FLAG(&uart3.uart, UART_FLAG_IDLE)){
__HAL_UART_CLEAR_IDLEFLAG(&uart3.uart);
uart3.RxCounter += (U3_RX_MAX - __HAL_DMA_GET_COUNTER(&uart3.dmarx));
HAL_UART_AbortReceive_IT(&uart3.uart);
}
}
void DMA1_Channel4_IRQHandler(void)
{
HAL_DMA_IRQHandler(&uart1.dmatx);
}
//void DMA1_Channel5_IRQHandler(void)
//{
// HAL_DMA_IRQHandler(&uart1.dmarx);
//}
//void DMA1_Channel7_IRQHandler(void)
//{
// HAL_DMA_IRQHandler(&uart2.dmatx);
//}
void DMA1_Channel6_IRQHandler(void)
{
HAL_DMA_IRQHandler(&uart2.dmarx);
}
//void DMA1_Channel2_IRQHandler(void)
//{
// HAL_DMA_IRQHandler(&uart3.dmatx);
//}
//void DMA1_Channel3_IRQHandler(void)
//{
// HAL_DMA_IRQHandler(&uart3.dmarx);
//}
void DMA1_Channel5_IRQHandler(void)
{
HAL_DMA_IRQHandler(&tim1_dmaup);
}
void DMA1_Channel2_IRQHandler(void)
{
HAL_DMA_IRQHandler(&tim2_dmaup);
}
void DMA1_Channel3_IRQHandler(void)
{
HAL_DMA_IRQHandler(&tim3_dmaup);
}
void DMA1_Channel7_IRQHandler(void)
{
HAL_DMA_IRQHandler(&tim4_dmaup);
}
void TIM1_UP_IRQHandler(void)
{
HAL_TIM_IRQHandler(&tim1);
}
void TIM2_IRQHandler(void)
{
HAL_TIM_IRQHandler(&tim2);
}
void TIM3_IRQHandler(void)
{
HAL_TIM_IRQHandler(&tim3);
}
void TIM4_IRQHandler(void)
{
HAL_TIM_IRQHandler(&tim4);
}
/*-------------------------------------------------*/
/*函数名:不可屏蔽中断处理函数 */
/*参 数:无 */
/*返回值:无 */
/*-------------------------------------------------*/
void NMI_Handler(void)
{
}
/*-------------------------------------------------*/
/*函数名:硬件出错后进入的中断处理函数 */
/*参 数:无 */
/*返回值:无 */
/*-------------------------------------------------*/
void HardFault_Handler(void)
{
}
/*-------------------------------------------------*/
/*函数名:软中断,SWI 指令调用的处理函数 */
/*参 数:无 */
/*返回值:无 */
/*-------------------------------------------------*/
void SVC_Handler(void)
{
}
/*-------------------------------------------------*/
/*函数名:可挂起的系统服务处理函数 */
/*参 数:无 */
/*返回值:无 */
/*-------------------------------------------------*/
void PendSV_Handler(void)
{
}
/*-------------------------------------------------*/
/*函数名:SysTic系统嘀嗒定时器处理函数 */
/*参 数:无 */
/*返回值:无 */
/*-------------------------------------------------*/
void SysTick_Handler(void)
{
HAL_IncTick();
}
main.c
#include "stm32f1xx_hal.h"
#include "rcc.h"
#include "led.h"
#include "sw.h"
#include "uart.h"
#include "time.h"
int main(void){
HAL_Init();
RccClock_Init();
U1_Init(921600);
Timer1_Init(10000 - 1, 7200 - 1, 1 - 1); // 72000000/7200/10000 = 1s
Timer2_Init(10000 - 1, 7200 - 1); // 1s
Timer3_Init(10000 - 1, 7200 - 1); // 1s
Timer4_Init(10000 - 1, 7200 - 1); // 1s
// uint16_t time1 = 0;
// uint16_t time2 = 0;
// uint16_t time3 = 0;
// uint16_t time4 = 0;
while(1){
/* 获取更新标志位 */
// if(__HAL_TIM_GET_FLAG(&tim1, TIM_FLAG_UPDATE)){
// __HAL_TIM_CLEAR_FLAG(&tim1, TIM_FLAG_UPDATE); ///清除标志位
// U1_Printf("定时器 1 定时时间:%d\\r\\n",time1++);
// }
//
// if(__HAL_TIM_GET_FLAG(&tim2, TIM_FLAG_UPDATE)){
// __HAL_TIM_CLEAR_FLAG(&tim2, TIM_FLAG_UPDATE);
// U1_Printf("定时器 2 定时时间:%d\\r\\n",time2++);
// }
//
// if(__HAL_TIM_GET_FLAG(&tim3, TIM_FLAG_UPDATE)){
// __HAL_TIM_CLEAR_FLAG(&tim3, TIM_FLAG_UPDATE);
// U1_Printf("定时器 3 定时时间:%d\\r\\n",time3++);
// }
//
// if(__HAL_TIM_GET_FLAG(&tim4, TIM_FLAG_UPDATE)){
// __HAL_TIM_CLEAR_FLAG(&tim4, TIM_FLAG_UPDATE);
// U1_Printf("定时器 4 定时时间:%d\\r\\n",time4++);
// }
}
}
六、HAL库:TIM1234 DMA循环方式 改变定时时间
1. 实验现象
DMA循环方式,传输4次*n数据,改变定时时间:第一次定时1s(初始化),第二次定时2s,第三次定时3s,第四次定时4s第五次定时5s,然后第六次 2s,第七次3s,第八次4s,第、九次5s,第十次2s
2. 如何判断DMA中断还是更新中断*
-
上一小节所说:DMA有半完成回调 和 完成回调
- 其中完成回调,和定时器更新回调的函数是一个函数
- 所以,如果要使用更新中断和DMA完成中断,则需要判断一下。
- 方法:通过判断DMA的状态,如果为Busy,则说明是更新中断进入的 定时器更新回调函数
-
那么在这一节是行不通的,**因为DMA一直在循环模式,一直处于BUSY状态,所以不能判断了。**但是 DMA的半完成中断和完成中断,在进入回调函数之前 就会把定时器设置成Ready状态,而定时器更新中断 并不会设置定时器的状态为Ready。
- 所以,着急需要判断定时器的更新中断,就可以判断这次中断是更新中断还是 DMA的中断。
- 并且,判断过后,需要把定时器状态重新赋值为 BUSY, 这样是为了防止更新中断在进入时,仍然进入DMA完成的分支
代码节选
//更新中断 回调函数(同时也是DMA完成的回调函数) uint16_t time1 = 1; uint16_t time2 = 1; uint16_t time3 = 1; uint16_t time4 = 1; void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { if(htim->Instance == TIM1){ /* 判断TIM是否为Ready状态,如果是 则是DMA完成中断进入的回调函数 */ if(htim->State == HAL_DMA_STATE_READY){ U1_Printf("DMA1 完成中断\\r\\n"); htim->State = HAL_TIM_STATE_BUSY; //设置定时器 BUSY状态 }else{ U1_Printf("定时器 1 定时时间:%d\\r\\n",time1++); } }else if(htim->Instance == TIM2){ if(htim->State == HAL_DMA_STATE_READY){ U1_Printf("DMA2 完成中断\\r\\n"); htim->State = HAL_TIM_STATE_BUSY; //设置定时器 BUSY状态 }else{ U1_Printf("定时器 2 定时时间:%d\\r\\n",time2++); } }else if(htim->Instance == TIM3){ if(htim->State == HAL_DMA_STATE_READY){ U1_Printf("DMA3 完成中断\\r\\n"); htim->State = HAL_TIM_STATE_BUSY; //设置定时器 BUSY状态 }else{ U1_Printf("定时器 3 定时时间:%d\\r\\n",time3++); } }else if(htim->Instance == TIM4){ if(htim->State == HAL_DMA_STATE_READY){ U1_Printf("DMA4 完成中断\\r\\n"); htim->State = HAL_TIM_STATE_BUSY; //设置定时器 BUSY状态 }else{ U1_Printf("定时器 4 定时时间:%d\\r\\n",time4++); } } }
4. 相关函数
TIM_HandleTypeDef
定时器总控结构体DMA_HandleTypeDef
DMA总控结构体__HAL_TIM_CLEAR_FLAG
****清除标志位__HAL_TIM_ENABLE_IT
使能中断HAL_TIM_Base_Start_DMA
DMA方式启动定时器__HAL_LINKDMA
DMA LINK
/* DMA配置 */
tim4_dmaup.Instance = DMA1_Channel7;
tim4_dmaup.Init.Direction = DMA_MEMORY_TO_PERIPH;
tim4_dmaup.Init.MemInc = DMA_MINC_ENABLE;
tim4_dmaup.Init.PeriphInc = DMA_PINC_DISABLE;
tim4_dmaup.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
tim4_dmaup.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
tim4_dmaup.Init.Mode = DMA_CIRCULAR; //循环模式
tim4_dmaup.Init.Priority = DMA_PRIORITY_MEDIUM;
__HAL_LINKDMA(&tim4, hdma[TIM_DMA_ID_UPDATE], tim4_dmaup);
HAL_DMA_Init(&tim4_dmaup);
4. 程序
time.c
#include "stm32f1xx_hal.h"
#include "time.h"
TIM_HandleTypeDef tim1; //(高级)定时器1总控结构体
TIM_HandleTypeDef tim2;
TIM_HandleTypeDef tim3;
TIM_HandleTypeDef tim4;
DMA_HandleTypeDef tim1_dmaup;
DMA_HandleTypeDef tim2_dmaup;
DMA_HandleTypeDef tim3_dmaup;
DMA_HandleTypeDef tim4_dmaup;
uint16_t tim1_dmaBuff[4] = {20000, 30000, 40000, 50000};
uint16_t tim2_dmaBuff[4] = {20000, 30000, 40000, 50000};
uint16_t tim3_dmaBuff[4] = {20000, 30000, 40000, 50000};
uint16_t tim4_dmaBuff[4] = {20000, 30000, 40000, 50000};
//定时器 1
void Timer1_Init(uint16_t arr, uint16_t psc, uint8_t rep)
{
tim1.Instance = TIM1; // 实例
tim1.Init.Period = arr; // 重装载值
tim1.Init.Prescaler = psc; // 分频系数
tim1.Init.CounterMode = TIM_COUNTERMODE_UP; // 计数模式
tim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // 分频因子
tim1.Init.RepetitionCounter = rep; // 重复计数值
tim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;// 自动重装载值 预装载使能位(影子寄存器)
HAL_TIM_Base_Init(&tim1); //初始化定时器
__HAL_TIM_CLEAR_FLAG(&tim1, TIM_FLAG_UPDATE); //手动 清除 定时器 更新事件
__HAL_TIM_ENABLE_IT(&tim1, TIM1_UP_IRQn); //手动 使能 定时器 更新中断
HAL_TIM_Base_Start_DMA(&tim1, (uint32_t*)tim1_dmaBuff, 4); //打开定时器(DMA方式)
}
//定时器 2
void Timer2_Init(uint16_t arr, uint16_t psc)
{
tim2.Instance = TIM2;
tim2.Init.Period = arr;
tim2.Init.Prescaler = psc;
tim2.Init.CounterMode = TIM_COUNTERMODE_UP;
tim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
tim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
HAL_TIM_Base_Init(&tim2);
__HAL_TIM_CLEAR_FLAG(&tim2, TIM_FLAG_UPDATE);
__HAL_TIM_ENABLE_IT(&tim2, TIM1_UP_IRQn);
HAL_TIM_Base_Start_DMA(&tim2, (uint32_t*)tim2_dmaBuff, 4);
}
//定时器 3
void Timer3_Init(uint16_t arr, uint16_t psc)
{
tim3.Instance = TIM3;
tim3.Init.Period = arr;
tim3.Init.Prescaler = psc;
tim3.Init.CounterMode = TIM_COUNTERMODE_UP;
tim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
tim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
HAL_TIM_Base_Init(&tim3);
__HAL_TIM_CLEAR_FLAG(&tim3, TIM_FLAG_UPDATE);
__HAL_TIM_ENABLE_IT(&tim3, TIM1_UP_IRQn);
HAL_TIM_Base_Start_DMA(&tim3, (uint32_t*)tim3_dmaBuff, 4);
}
//定时器 4
void Timer4_Init(uint16_t arr, uint16_t psc)
{
tim4.Instance = TIM4;
tim4.Init.Period = arr;
tim4.Init.Prescaler = psc;
tim4.Init.CounterMode = TIM_COUNTERMODE_UP;
tim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
tim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
HAL_TIM_Base_Init(&tim4);
__HAL_TIM_CLEAR_FLAG(&tim4, TIM_FLAG_UPDATE);
__HAL_TIM_ENABLE_IT(&tim4, TIM1_UP_IRQn);
HAL_TIM_Base_Start_DMA(&tim4, (uint32_t*)tim4_dmaBuff, 4);
}
//定时器 硬件初始化回调函数
void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim)
{
if(htim->Instance == TIM1){
__HAL_RCC_TIM1_CLK_ENABLE(); //使能时钟
__HAL_RCC_DMA1_CLK_ENABLE();
HAL_NVIC_SetPriority(TIM1_UP_IRQn, 3, 0); //配置、打开 更新中断
HAL_NVIC_EnableIRQ(TIM1_UP_IRQn);
/* DMA配置 */
tim1_dmaup.Instance = DMA1_Channel5;
tim1_dmaup.Init.Direction = DMA_MEMORY_TO_PERIPH; //存储区到外设
tim1_dmaup.Init.MemInc = DMA_MINC_ENABLE; //存储区递增
tim1_dmaup.Init.PeriphInc = DMA_PINC_DISABLE; //外设不递增
tim1_dmaup.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD; //半字 2字节
tim1_dmaup.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
tim1_dmaup.Init.Mode = DMA_CIRCULAR; //循环模式
tim1_dmaup.Init.Priority = DMA_PRIORITY_MEDIUM;
__HAL_LINKDMA(&tim1, hdma[TIM_DMA_ID_UPDATE], tim1_dmaup);
HAL_DMA_Init(&tim1_dmaup);
HAL_NVIC_SetPriority(DMA1_Channel5_IRQn, 3, 0); //配置、打开 通道5的中断
HAL_NVIC_EnableIRQ(DMA1_Channel5_IRQn);
}else if(htim->Instance == TIM2){
__HAL_RCC_TIM2_CLK_ENABLE();
__HAL_RCC_DMA1_CLK_ENABLE();
HAL_NVIC_SetPriority(TIM2_IRQn, 3, 0);
HAL_NVIC_EnableIRQ(TIM2_IRQn);
/* DMA配置 */
tim2_dmaup.Instance = DMA1_Channel2;
tim2_dmaup.Init.Direction = DMA_MEMORY_TO_PERIPH;
tim2_dmaup.Init.MemInc = DMA_MINC_ENABLE;
tim2_dmaup.Init.PeriphInc = DMA_PINC_DISABLE;
tim2_dmaup.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
tim2_dmaup.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
tim2_dmaup.Init.Mode = DMA_CIRCULAR; //循环模式
tim2_dmaup.Init.Priority = DMA_PRIORITY_MEDIUM;
__HAL_LINKDMA(&tim2, hdma[TIM_DMA_ID_UPDATE], tim2_dmaup);
HAL_DMA_Init(&tim2_dmaup);
HAL_NVIC_SetPriority(DMA1_Channel2_IRQn, 3, 0); //配置、打开 通道5的中断
HAL_NVIC_EnableIRQ(DMA1_Channel2_IRQn);
}else if(htim->Instance == TIM3){
__HAL_RCC_TIM3_CLK_ENABLE();
__HAL_RCC_DMA1_CLK_ENABLE();
HAL_NVIC_SetPriority(TIM3_IRQn, 3, 0);
HAL_NVIC_EnableIRQ(TIM3_IRQn);
/* DMA配置 */
tim3_dmaup.Instance = DMA1_Channel3;
tim3_dmaup.Init.Direction = DMA_MEMORY_TO_PERIPH;
tim3_dmaup.Init.MemInc = DMA_MINC_ENABLE;
tim3_dmaup.Init.PeriphInc = DMA_PINC_DISABLE;
tim3_dmaup.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
tim3_dmaup.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
tim3_dmaup.Init.Mode = DMA_CIRCULAR; //循环模式
tim3_dmaup.Init.Priority = DMA_PRIORITY_MEDIUM;
__HAL_LINKDMA(&tim3, hdma[TIM_DMA_ID_UPDATE], tim3_dmaup);
HAL_DMA_Init(&tim3_dmaup);
HAL_NVIC_SetPriority(DMA1_Channel3_IRQn, 3, 0); //配置、打开 通道5的中断
HAL_NVIC_EnableIRQ(DMA1_Channel3_IRQn);
}else if(htim->Instance == TIM4){
__HAL_RCC_TIM4_CLK_ENABLE();
__HAL_RCC_DMA1_CLK_ENABLE();
HAL_NVIC_SetPriority(TIM4_IRQn, 3, 0);
HAL_NVIC_EnableIRQ(TIM4_IRQn);
/* DMA配置 */
tim4_dmaup.Instance = DMA1_Channel7;
tim4_dmaup.Init.Direction = DMA_MEMORY_TO_PERIPH;
tim4_dmaup.Init.MemInc = DMA_MINC_ENABLE;
tim4_dmaup.Init.PeriphInc = DMA_PINC_DISABLE;
tim4_dmaup.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
tim4_dmaup.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
tim4_dmaup.Init.Mode = DMA_CIRCULAR; //循环模式
tim4_dmaup.Init.Priority = DMA_PRIORITY_MEDIUM;
__HAL_LINKDMA(&tim4, hdma[TIM_DMA_ID_UPDATE], tim4_dmaup);
HAL_DMA_Init(&tim4_dmaup);
HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 3, 0); //配置、打开 通道5的中断
HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn);
}
}
//定时器 硬件 De 回调函数
void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim)
{
if(htim->Instance == TIM1){
__HAL_RCC_TIM1_CLK_DISABLE();
}else if(htim->Instance == TIM2){
__HAL_RCC_TIM2_CLK_DISABLE();
}else if(htim->Instance == TIM3){
__HAL_RCC_TIM3_CLK_DISABLE();
}else if(htim->Instance == TIM4){
__HAL_RCC_TIM4_CLK_DISABLE();
}
}
//更新中断 回调函数(同时也是DMA完成的回调函数)
uint16_t time1 = 1;
uint16_t time2 = 1;
uint16_t time3 = 1;
uint16_t time4 = 1;
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
if(htim->Instance == TIM1){
/* 判断TIM是否为Ready状态,如果是 则是DMA完成中断进入的回调函数 */
if(htim->State == HAL_DMA_STATE_READY){
U1_Printf("DMA1 完成中断\\r\\n");
htim->State = HAL_TIM_STATE_BUSY; //设置定时器 BUSY状态
}else{
U1_Printf("定时器 1 定时时间:%d\\r\\n",time1++);
}
}else if(htim->Instance == TIM2){
if(htim->State == HAL_DMA_STATE_READY){
U1_Printf("DMA2 完成中断\\r\\n");
htim->State = HAL_TIM_STATE_BUSY; //设置定时器 BUSY状态
}else{
U1_Printf("定时器 2 定时时间:%d\\r\\n",time2++);
}
}else if(htim->Instance == TIM3){
if(htim->State == HAL_DMA_STATE_READY){
U1_Printf("DMA3 完成中断\\r\\n");
htim->State = HAL_TIM_STATE_BUSY; //设置定时器 BUSY状态
}else{
U1_Printf("定时器 3 定时时间:%d\\r\\n",time3++);
}
}else if(htim->Instance == TIM4){
if(htim->State == HAL_DMA_STATE_READY){
U1_Printf("DMA4 完成中断\\r\\n");
htim->State = HAL_TIM_STATE_BUSY; //设置定时器 BUSY状态
}else{
U1_Printf("定时器 4 定时时间:%d\\r\\n",time4++);
}
}
}
//DMA 半完成回调函数
void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim)
{
if(htim->Instance == TIM1){
U1_Printf("定时器 1 DMA半完成中断\\r\\n");
htim->State = HAL_TIM_STATE_BUSY; //设置定时器 BUSY状态
}else if(htim->Instance == TIM2){
U1_Printf("定时器 2 DMA半完成中断\\r\\n");
htim->State = HAL_TIM_STATE_BUSY; //设置定时器 BUSY状态
}else if(htim->Instance == TIM3){
U1_Printf("定时器 3 DMA半完成中断\\r\\n");
htim->State = HAL_TIM_STATE_BUSY; //设置定时器 BUSY状态
}else if(htim->Instance == TIM4){
U1_Printf("定时器 4 DMA半完成中断\\r\\n");
htim->State = HAL_TIM_STATE_BUSY; //设置定时器 BUSY状态
}
}
time.h
#ifndef __TIME_H
#define __TIME_H
#include "uart.h"
/* 对外声明总控结构体 */
extern TIM_HandleTypeDef tim1;
extern TIM_HandleTypeDef tim2;
extern TIM_HandleTypeDef tim3;
extern TIM_HandleTypeDef tim4;
extern DMA_HandleTypeDef tim1_dmaup;
extern DMA_HandleTypeDef tim2_dmaup;
extern DMA_HandleTypeDef tim3_dmaup;
extern DMA_HandleTypeDef tim4_dmaup;
/* 初始化函数 */
void Timer1_Init(uint16_t arr, uint16_t psc, uint8_t rep);
void Timer2_Init(uint16_t arr, uint16_t psc);
void Timer3_Init(uint16_t arr, uint16_t psc);
void Timer4_Init(uint16_t arr, uint16_t psc);
#endif
stm32f1xx_it.c
/*-------------------------------------------------*/
/* */
/* 实现各种中断服务函数的源文件 */
/* */
/*-------------------------------------------------*/
#include "stm32f1xx_hal.h"
#include "stm32f1xx_it.h"
#include "uart.h"
#include "time.h"
void EXTI15_10_IRQHandler(void)
{
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_14);
}
void EXTI0_IRQHandler(void)
{
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);
}
void USART1_IRQHandler(void)
{
HAL_UART_IRQHandler(&uart1.uart);
if(__HAL_UART_GET_FLAG(&uart1.uart, UART_FLAG_IDLE)){
__HAL_UART_CLEAR_IDLEFLAG(&uart1.uart);
uart1.RxCounter += (U1_RX_MAX - __HAL_DMA_GET_COUNTER(&uart1.dmarx));
HAL_UART_AbortReceive_IT(&uart1.uart);
}
}
void USART2_IRQHandler(void)
{
HAL_UART_IRQHandler(&uart2.uart);
if(__HAL_UART_GET_FLAG(&uart2.uart, UART_FLAG_IDLE)){
__HAL_UART_CLEAR_IDLEFLAG(&uart2.uart);
uart2.RxCounter += (U2_RX_MAX - __HAL_DMA_GET_COUNTER(&uart2.dmarx));
HAL_UART_AbortReceive_IT(&uart2.uart);
}
}
void USART3_IRQHandler(void)
{
HAL_UART_IRQHandler(&uart3.uart);
if(__HAL_UART_GET_FLAG(&uart3.uart, UART_FLAG_IDLE)){
__HAL_UART_CLEAR_IDLEFLAG(&uart3.uart);
uart3.RxCounter += (U3_RX_MAX - __HAL_DMA_GET_COUNTER(&uart3.dmarx));
HAL_UART_AbortReceive_IT(&uart3.uart);
}
}
void DMA1_Channel4_IRQHandler(void)
{
HAL_DMA_IRQHandler(&uart1.dmatx);
}
//void DMA1_Channel5_IRQHandler(void)
//{
// HAL_DMA_IRQHandler(&uart1.dmarx);
//}
//void DMA1_Channel7_IRQHandler(void)
//{
// HAL_DMA_IRQHandler(&uart2.dmatx);
//}
void DMA1_Channel6_IRQHandler(void)
{
HAL_DMA_IRQHandler(&uart2.dmarx);
}
//void DMA1_Channel2_IRQHandler(void)
//{
// HAL_DMA_IRQHandler(&uart3.dmatx);
//}
//void DMA1_Channel3_IRQHandler(void)
//{
// HAL_DMA_IRQHandler(&uart3.dmarx);
//}
void DMA1_Channel5_IRQHandler(void)
{
HAL_DMA_IRQHandler(&tim1_dmaup);
}
void DMA1_Channel2_IRQHandler(void)
{
HAL_DMA_IRQHandler(&tim2_dmaup);
}
void DMA1_Channel3_IRQHandler(void)
{
HAL_DMA_IRQHandler(&tim3_dmaup);
}
void DMA1_Channel7_IRQHandler(void)
{
HAL_DMA_IRQHandler(&tim4_dmaup);
}
void TIM1_UP_IRQHandler(void)
{
HAL_TIM_IRQHandler(&tim1);
}
void TIM2_IRQHandler(void)
{
HAL_TIM_IRQHandler(&tim2);
}
void TIM3_IRQHandler(void)
{
HAL_TIM_IRQHandler(&tim3);
}
void TIM4_IRQHandler(void)
{
HAL_TIM_IRQHandler(&tim4);
}
/*-------------------------------------------------*/
/*函数名:不可屏蔽中断处理函数 */
/*参 数:无 */
/*返回值:无 */
/*-------------------------------------------------*/
void NMI_Handler(void)
{
}
/*-------------------------------------------------*/
/*函数名:硬件出错后进入的中断处理函数 */
/*参 数:无 */
/*返回值:无 */
/*-------------------------------------------------*/
void HardFault_Handler(void)
{
}
/*-------------------------------------------------*/
/*函数名:软中断,SWI 指令调用的处理函数 */
/*参 数:无 */
/*返回值:无 */
/*-------------------------------------------------*/
void SVC_Handler(void)
{
}
/*-------------------------------------------------*/
/*函数名:可挂起的系统服务处理函数 */
/*参 数:无 */
/*返回值:无 */
/*-------------------------------------------------*/
void PendSV_Handler(void)
{
}
/*-------------------------------------------------*/
/*函数名:SysTic系统嘀嗒定时器处理函数 */
/*参 数:无 */
/*返回值:无 */
/*-------------------------------------------------*/
void SysTick_Handler(void)
{
HAL_IncTick();
}
main.c
#include "stm32f1xx_hal.h"
#include "rcc.h"
#include "led.h"
#include "sw.h"
#include "uart.h"
#include "time.h"
int main(void){
HAL_Init();
RccClock_Init();
U1_Init(921600);
Timer1_Init(10000 - 1, 7200 - 1, 1 - 1); // 72000000/7200/10000 = 1s
Timer2_Init(10000 - 1, 7200 - 1); // 1s
Timer3_Init(10000 - 1, 7200 - 1); // 1s
Timer4_Init(10000 - 1, 7200 - 1); // 1s
// uint16_t time1 = 0;
// uint16_t time2 = 0;
// uint16_t time3 = 0;
// uint16_t time4 = 0;
while(1){
/* 获取更新标志位 */
// if(__HAL_TIM_GET_FLAG(&tim1, TIM_FLAG_UPDATE)){
// __HAL_TIM_CLEAR_FLAG(&tim1, TIM_FLAG_UPDATE); ///清除标志位
// U1_Printf("定时器 1 定时时间:%d\\r\\n",time1++);
// }
//
// if(__HAL_TIM_GET_FLAG(&tim2, TIM_FLAG_UPDATE)){
// __HAL_TIM_CLEAR_FLAG(&tim2, TIM_FLAG_UPDATE);
// U1_Printf("定时器 2 定时时间:%d\\r\\n",time2++);
// }
//
// if(__HAL_TIM_GET_FLAG(&tim3, TIM_FLAG_UPDATE)){
// __HAL_TIM_CLEAR_FLAG(&tim3, TIM_FLAG_UPDATE);
// U1_Printf("定时器 3 定时时间:%d\\r\\n",time3++);
// }
//
// if(__HAL_TIM_GET_FLAG(&tim4, TIM_FLAG_UPDATE)){
// __HAL_TIM_CLEAR_FLAG(&tim4, TIM_FLAG_UPDATE);
// U1_Printf("定时器 4 定时时间:%d\\r\\n",time4++);
// }
}
}