PaddlePaddle 开源产业级文档印章识别PaddleX-Pipeline “seal_recognition”模型 开箱即用篇(一)

AI时代到来,各行各业都在追求细分领域垂直类深度学习模型,今天给大家介绍一个PaddlePaddle旗下,基于PaddleX Pipeline 来完成印章识别的模型“seal_recognition”。

官方地址:https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/ocr_pipelines/seal_recognition.md

下面开始在本地使用PaddleX:

一、安装Python:

        推荐使用conda(可选)。

       Python版本:3.8.19(推荐版本)。

二、安装CUDA

        无论运行pytorch、tensflow还是paddlepaddle等深度学习框架,均推荐在GPU上进行推理。若要使用GPU进行推理,请在安装CUDA前提前更新好本机的显卡驱动。

        CUDA版本:11.8(推荐)

        CUDA参考地址:https://developer.nvidia.com/cuda-11-8-0-download-archive

三、安装PaddlePaddle

        既然我们想使用PaddlePaddle深度学习框架旗下的Pipeline,那肯定要提前安装好PaddlePaddle深度学习框架。

        PaddlePaddle版本:3.0.0-beta2

        PaddlePaddle参考地址:飞桨PaddlePaddle-源于产业实践的开源深度学习平台

至此,我们的基础环境已经安装完成,接下来就可以开始进行使用Pipeline了。

四、获取PaddleX

        PaddleX是什么?引用官方介绍:

PaddleX 3.0 是基于飞桨框架构建的低代码开发工具,它集成了众多开箱即用的预训练模型,可以实现模型从训练到推理的全流程开发,支持国内外多款主流硬件,助力AI 开发者进行产业实践。

模型丰富一键调用:将覆盖文本图像智能分析、OCR、目标检测、时序预测等多个关键领域的 200+ 飞桨模型整合为 19 条模型产线,通过极简的 Python API 一键调用,快速体验模型效果。同时支持 20+ 单功能模块,方便开发者进行模型组合使用。

         官方地址:GitHub - PaddlePaddle/PaddleX: All-in-One Development Tool based on PaddlePaddle(飞桨低代码开发工具)

         简单来说,就是PaddlePaddle研发出来的一套开箱即用产品的底座,安装了PaddleX后,就可以通过几行命令来完成不同的任务,比如几行命令完成目标检测,几行命令完成文字识别等。

        安装PaddleX的几种方式:

一、Wheel包安装模式:

        若你只是希望快速完成模型的推理和集成,那么推荐您使用更便捷更轻量的Wheel包安装模式。快速安装轻量级的Wheel包之后,您即可基于PaddleX支持的所有模型进行推理,并能直接集成进您的项目中。

        

        pip install https://paddle-model-ecology.bj.bcebos.com/paddlex/whl/paddlex-3.0.0b1-py3-none-any.whl

二、插件安装模式:

        若您使用PaddleX的应用场景为二次开发 (例如重新训练模型、微调模型、自定义模型结构、自定义推理代码等),那么推荐您使用功能更加强大的插件安装模式。

安装您需要的PaddleX插件之后,您不仅同样能够对插件支持的模型进行推理与集成,还可以对其进行模型训练等二次开发更高级的操作。

       

        git clone https://github.com/PaddlePaddle/PaddleX.git
        cd PaddleX
        pip install -e .
        paddlex --install PaddleXXX  # 例如PaddleOCR

五、基于PaddleX安装第一个插件:PaddleOCR

paddlex --install PaddleOCR

六、几行代码完成快速推理(调用文心一言大模型、默认不可修改,需要Access_token,按需付费。 若无需大语言模型,看查看第七条推理方式):

````
        from paddlex import create_pipeline

        pipeline = create_pipeline(
            pipeline="PP-ChatOCRv3-doc",
            llm_name="ernie-3.5",
            llm_params={"api_type": "qianfan", "ak": "", "sk": ""} # 使用千帆接口,请填入您的ak与sk,否则无法调用大模型
            # llm_params={"api_type": "aistudio", "access_token": ""} # 或者使用AIStudio接口,请填入您的access_token,否则无法调用大模型
            )

        visual_result, visual_info = pipeline.visual_predict("https://paddle-model-ecology.bj.bcebos.com/paddlex/PaddleX3.0/doc_images/practical_tutorial/PP-ChatOCRv3_doc_seal/test.png")

        for res in visual_result:
            res.save_to_img("./output")
            res.save_to_html('./output')
            res.save_to_xlsx('./output')

        vector = pipeline.build_vector(visual_info=visual_info)
        chat_result = pipeline.chat(
            key_list=["印章名称"],
            visual_info=visual_info,
            vector=vector,
            )
        chat_result.print()
    ````

七、几行代码完成快速推理(无需大预言模型,支持本地化部署):

 ````
        from paddlex import create_pipeline

        pipeline = create_pipeline(pipeline="seal_recognition")

        output = pipeline.predict("./test_images/1387.jpg")
        for res in output:
            res.print() ## 打印预测的结构化输出
            res.save_to_img("./output_images/") ## 保存可视化结果
    ````

八、查看结果

写在最后:下一章节,完成印章识别“seal_recognition”模型的微调与训练。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/915469.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

06.VSCODE:备战大项目,CMake专项配置

娇小灵活的简捷配置不过是年轻人谈情说爱的玩具,帝国大厦的构建,终归要交给CMake去母仪天下。一个没有使用 CMake 的 C 项目,就像未来世界里的一台相声表演,有了德纲却无谦,观众笑着遗憾。—— 语出《双城记》作者&…

新高考志愿录取方式变革,如何应对挑战?答案在这里

在教育改革的浪潮中,新高考的实施带来了重大变革,其中志愿录取方式的变化尤为关键。它不仅关系着每一位考生的未来发展,更是对整个教育体系产生着深远影响。今天,我们就来深入探讨新高考的两大志愿录取方式,分析其特点…

Unity网络通信(part7.分包和黏包)

目录 前言 概念 解决方案 具体代码 总结 分包黏包概念 分包 黏包 解决方案概述 前言 在探讨Unity网络通信的深入内容时,分包和黏包问题无疑是其中的关键环节。以下是对Unity网络通信中分包和黏包问题前言部分的详细解读。 概念 在网络通信中,…

64位PE壳编写指南

文章目录 前记x64壳后记reference 文章首发于微信公众号《渗透测试安全攻防》 前记 开源的关于PE压缩和加密壳几乎都是32位,于是学习写一个64位的壳供参考,其原理差别不大学写PE壳是熟悉PE结构很好的方式项目已开源,求个stars嘻嘻嘻 https:…

3D意识(3D Awareness)浅析

一、简介 3D意识(3D Awareness)主要是指视觉基础模型(visual foundation models)对于3D结构的意识或感知能力,即这些模型在处理2D图像时是否能够理解和表示出图像中物体或场景的3D结构,其具体体现在编码场景…

Web安全之SQL注入---基础

文章目录 SQL注入简介SQL注入基础SQL注入分类SQL注入流程 SQL注入简介 什么是SQL注入? SQL注入即是指web应用程序对用户输入数据的合法性没有判断或过滤不严,攻击者可以在web应用程序中事先定义好的查询语句的结尾上添加额外的SQL语句,在管理…

黄仁勋对话孙正义:日本的AI新饼、Arm的AI野心与英伟达的东亚新机会

2020 年的软银世界大会上,孙正义与黄仁勋围绕「What’s Next for AI」展开了一次围炉对谈。黄仁勋穿着标志性的皮夹克坐在火堆旁,畅谈了将 Arm 纳入麾下的重要价值,孙正义也毫不吝啬赞美之词,称老黄在未来 10 年会达到史蒂夫 乔布…

【案例】Excel使用宏来批量插入图片

一、场景介绍 我有一个excel文件,需要通过一列的文件名称,按照规则给批量上传图片附件。 原始文件: 成功后文件: 二、实现方法 1. 使用【wps】工具打开Excel文件,将其保存为启用宏的文件。 2.找到编辑宏的【VB编辑器…

Kubernetes-ArgoCD篇-01-简介

1、什么是Argo CD Argo CD 是针对 Kubernetes 的声明式 GitOps 持续交付工具。 Argo CD官方文档地址:https://argo-cd.readthedocs.io Argo CD源码地址:https://github.com/argoproj/argo-cd 1.1 关于Argo Argo是一个开源的项目,主要是扩…

odoo17 前端 在头像下拉 dropdown 自定义菜单

odoo17 前端 在头像下拉 dropdown 自定义菜单 其实很简单, 我们先找到原来已经创建好的, 找到代码位置 使用 我的资料 为例 odoo-17.0\addons\hr\static\src\user_menu\my_profile.js /** odoo-module **/import { _t } from "web/core/l10n/translation"; import …

时序预测 | Python基于CNN-transformer时间序列预测

时序预测 | Python基于CNN-transformer时间序列预测 目录 时序预测 | Python基于CNN-transformer时间序列预测预测效果基本介绍参考资料 预测效果 基本介绍 时序预测 | Python基于CNN-transformer时间序列预测 Cnn-transformer-自适应稀疏自注意力ASSA-对比归一化contranorm预…

(干货)Jenkins使用kubernetes插件连接k8s的认证方式

#Kubernetes插件简介 Kubernetes 插件的目的是能够使用 Kubernetes 配合,实现动态配置 Jenkins 代理(使用 Kubernetes 调度机制来优化负载),在执行 Jenkins Job 构建时,Jenkins Master 会在 kubernetes 中创建一个 Sla…

Python学习25天

# 切片语法:序列[起始索引:结束索引:步长],起始不写默认为0,结束不写默认取到结尾,步长不写默认为1(步长为-反向截取,最后一位起始序列为-1),左闭右开,切片后原序列不变 str "lx,hahaha,呵呵" s…

API接口精准获取商品详情信息案例

在当今数字化时代,电子商务平台的蓬勃发展,使得商品信息的获取变得尤为重要。API(Application Programming Interface,应用程序编程接口)作为连接前端用户界面与后端服务的桥梁,扮演着至关重要的角色。本文…

MySQL算数运算符基础:详解与入门

目录 背景: 过程: 1.加法与减法运算符 1.2扩展: 1.3运算结果得出结论 : 2.乘法和除法运算 ​2.1练习: 2.2运算结果得出结论 : 3.求模取余运算符 3.1练习: 总结: 背景&a…

【vue2.0入门】vue基本语法

目录 引言一、页面动态插值1. 一般用法 二、计算属性computed三、动态class、style绑定四、条件渲染与列表渲染五、事件处理六、表单输入绑定七、总结 引言 本系列教程旨在帮助一些零基础的玩家快速上手前端开发。基于我自学的经验会删减部分使用频率不高的内容,并不…

丹摩征文活动 | 丹摩智算平台:服务器虚拟化的璀璨明珠与实战秘籍

丹摩DAMODEL|让AI开发更简单!算力租赁上丹摩! 目录 一、引言 二、丹摩智算平台概述 (一)平台架构 (二)平台特点 三、服务器虚拟化基础 (一)虚拟化的概念 &#xf…

蓝牙5.0模块助力闹钟升级,开启智能生活第一步

随着智能家居产业的快速发展,智能闹钟作为其中一个重要的品类,逐渐从单一的时间提醒功能演变为集音频播放、语音交互、智能控制等多种功能于一体的智能设备。而在这些功能的实现中,蓝牙音频模组扮演着核心角色。 1、蓝牙音频模组的功能概述 …

POI word转pdf乱码问题处理

1.使用poi 转换word文档成pdf 导入依赖 <dependency><groupId>com.aspose</groupId><artifactId>words</artifactId><version>16.8.0</version></dependency>2.代码实现: SneakyThrowspublic void wordToPdf(String docPath,…