通过scrapy和Django登录、爬取和持久化数据

使用 ScrapyDjango 实现登录、爬取和持久化数据的完整流程,可以通过以下步骤完成:

  1. 创建 Django 项目和数据库模型:定义一个存储爬取数据的数据库模型。
  2. 创建 Scrapy 项目:实现登录并抓取目标页面的数据。
  3. 整合 Scrapy 和 Django:在 Scrapy 中使用 Django 的模型保存爬取的数据到数据库。

在这里插入图片描述

问题背景

在将 Django 和 Scrapy 成功集成后,用户想要持久化爬取到的数据到数据库中。但是,存储后发现,部分元素丢失了。用户猜测自己可能遗漏了一些东西,但无法解决。

以下是用户的爬虫代码:

from scrapy.http import FormRequest, Request
from scrapy.spider import BaseSpider
from scrapy.selector import HtmlXPathSelector
from scrapy import log
from scrapy.contrib.loader import XPathItemLoader
from datacrowdscrapy.items import DatacrowdItem

class DatacrowdSpider(BaseSpider):
    name = 'datacrowd'
    start_urls = ['https://www.exemple.com/login']

    def parse(self, response):
        parsed = [FormRequest.from_response(
            response,
            formdata={
                'login': 'email@gmail.com',
                'password': 'password'
            },
            callback=self.after_login)]

        return parsed

    def after_login(self, response):
        # check login succeed before going on
        if "authentication failed" in response.body:
            self.log("Login failed", level=log.ERROR)
            return

        selector = HtmlXPathSelector(response)
        investmentsLinks = selector.select('//a[contains(@class, "myClass")]/@href').extract()
        for link in investmentsLinks:
            curDatacrowdItem = XPathItemLoader(item=DatacrowdItem(), response=response)
            curDatacrowdItem.add_value('url', link)
            curRequest = Request(url=link, callback=self.parse_investments, meta={'item': curDatacrowdItem})
            yield curRequest


    def parse_investments(self, response):
        selector = HtmlXPathSelector(response)
        curDatacrowdItem = response.meta['item']

        # Details
        details = selector.select('//td/div[contains(@class, "myClass")]/text()').extract()
        curDatacrowdItem.add_value('someVal', details[0].strip())
        /* ... */

        # Get nbInvestors
        investorLink = selector.select('//ul[contains(@id, "myId")]/li/@onclick').re(r'window.location.href=\'(http.+/data.+)\'')
        curRequest = Request(url=investorLink[0], callback=self.parse_investors, meta={'item': curDatacrowdItem})
        yield curRequest


        # Get last company details
        detailsLink = selector.select('//ul[contains(@id, "myData")]/li/@onclick').re(r'window.location.href=\'(http.+/company-details.+)\'')
        curRequest = Request(url=detailsLink[0], callback=self.parse_details, meta={'item': curDatacrowdItem})
        yield curRequest

    def parse_investors(self, response):
        selector = HtmlXPathSelector(response)
        curDatacrowdItem = response.meta['item']
        nbInvestors = len(selector.select('//ul/li[contains(@class, "myClass")]'))
        curDatacrowdItem.add_value('nbInvestors', nbInvestors)
        return curDatacrowdItem

    def parse_details(self, response):
        selector = HtmlXPathSelector(response)
        curDatacrowdItem = response.meta['item']

        # Company name
        name = selector.select('//div[contains(@class, "myClass")]/h2/text()').extract()
        curDatacrowdItem.add_value('name', name[0].strip())
        item = curDatacrowdItem.load_item()
        item.save() # Here I'm persisiting datas
        return item

用户收到的错误日志如下:

[datacrowd] ERROR: Spider must return Request, BaseItem or None, got 'XPathItemLoader' in <GET http://www.exemple.com/url/slug>

解决方案

用户犯的错误是,他正在返回一个 XPathItemLoader 对象,而不是一个 Item 对象。在 “after_login” 方法中,用户将一个 XPathItemLoader 对象添加到 meta 中,然后尝试在稍后返回它。正确的做法是使用 load_item 方法来返回 Item 对象。

要解决这个问题,用户可以将以下代码添加到 “after_login” 方法中:

curRequest = Request(url=link, callback=self.parse_investments, meta={'item': curDatacrowdItem.load_item()})

另外,建议用户重命名变量,以避免类似的错误。

总结

这段代码展示了如何结合 ScrapyDjango 登录、抓取和持久化数据的基本流程。这个组合适用于需要在 Web 项目中自动抓取并存储数据的需求,如商品数据爬取。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/914946.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SpringMVC全面复习

Javaweb SpringMVC Spring MVC是Spring框架的一个模块&#xff0c;专门用于构建Web应用程序的模型-视图-控制器&#xff08;MVC&#xff09;架构。它通过清晰的分离关注点&#xff0c;简化了Web应用各部分的开发。Spring MVC提供了强大的绑定机制&#xff0c;能够将请求参数绑定…

【再谈设计模式】抽象工厂模式~对象创建的统筹者

一、引言 在软件开发的世界里&#xff0c;高效、灵活且易于维护的代码结构是每个开发者追求的目标。设计模式就像是建筑蓝图中的经典方案&#xff0c;为我们提供了应对各种常见问题的有效策略。其中&#xff0c;抽象工厂模式在对象创建方面扮演着重要的角色&#xff0c;它如同一…

【Linux】ELF可执行程序和动态库加载

&#x1f525; 个人主页&#xff1a;大耳朵土土垚 &#x1f525; 所属专栏&#xff1a;Linux系统编程 这里将会不定期更新有关Linux的内容&#xff0c;欢迎大家点赞&#xff0c;收藏&#xff0c;评论&#x1f973;&#x1f973;&#x1f389;&#x1f389;&#x1f389; 文章目…

SpringBootCloud 服务注册中心Nacos对服务进行管理

介绍 Nacos&#xff08;Naming and Configuration Service&#xff09;是一个开源的、动态的服务发现、配置管理和服务管理平台&#xff0c;特别适用于云原生应用和微服务架构。它可以作为服务注册中心&#xff0c;用于微服务的注册、发现、配置管理等。在微服务架构中&#x…

八款局域网监控软件优选|2024最新排行榜(企业老板收藏篇)

在当今数字化办公的时代&#xff0c;企业和组织对于局域网电脑监控的需求日益增长。无论是为了保障信息安全、提高员工工作效率&#xff0c;还是为了规范网络行为&#xff0c;一款优秀的局域网电脑监控软件都能发挥重要作用。市面上的监控软件种类繁多&#xff0c;功能各异&…

限价订单簿中的高频交易

数量技术宅团队在CSDN学院推出了量化投资系列课程 欢迎有兴趣系统学习量化投资的同学&#xff0c;点击下方链接报名&#xff1a; 量化投资速成营&#xff08;入门课程&#xff09; Python股票量化投资 Python期货量化投资 Python数字货币量化投资 C语言CTP期货交易系统开…

丹摩征文活动|CogVideoX-2b:从0到1,轻松完成安装与部署!

丹摩征文活动 | CogVideoX-2b&#xff1a;从0到1&#xff0c;轻松完成安装与部署&#xff01; CogVideoX 介绍 CogVideoX的问世&#xff0c;标志着视频制作技术迈入了一个全新的时代。它不仅打破了传统视频制作在效率与质量之间的平衡难题&#xff0c;还通过其先进的3D变分自…

Creo 9.0 中文版软件下载安装教程

[软件名称]&#xff1a;Creo 9.0 [软件语言]&#xff1a;简体中文 [软件大小]&#xff1a;5.2G [安装环境]&#xff1a;Win11/Win10/ [硬件要求]&#xff1a;内存8G及以上 下载方法&#xff1a;电脑打开浏览器&#xff0c;复制下载链接&#xff0c;粘贴至浏览器网址栏&…

RT-DETR融合CVPR[2024]无膨胀多尺度卷积PKI模块及相关改进思路

RT-DETR使用教程&#xff1a; RT-DETR使用教程 RT-DETR改进汇总贴&#xff1a;RT-DETR更新汇总贴 《Poly Kernel Inception Network for Remote Sensing Detection》 一、 模块介绍 论文链接&#xff1a;https://arxiv.org/abs/2403.06258 代码链接&#xff1a;https://github…

ubuntu-desktop-24.04上手指南(更新阿里源、安装ssh、安装chrome、设置固定IP、安装搜狗输入法)

ubuntu-desktop-24.04上手指南(更新阿里源、安装ssh、安装chrome、设置固定IP、安装搜狗输入法) 一、更新并安装基础软件 #切换root用户 sudo su -#更新 apt update #升级 apt upgrade#install vim apt install vim#install net-tools apt install net-tools二、安装ssh并设置…

[CKS] K8S ServiceAccount Set Up

最近准备花一周的时间准备CKS考试&#xff0c;在准备考试中发现有一个题目关于Rolebinding的题目。 ​ 专栏其他文章: [CKS] Create/Read/Mount a Secret in K8S-CSDN博客[CKS] Audit Log Policy-CSDN博客 -[CKS] 利用falco进行容器日志捕捉和安全监控-CSDN博客[CKS] K8S Netwo…

介绍和安装及数据类型

1、介绍和安装 1.1、简介 ClickHouse是俄罗斯的Yandex于2016年开源的列式存储数据库&#xff08;DBMS&#xff09;&#xff0c;使用C语言编写&#xff0c;主要用于在线分析处理查询&#xff08;OLAP&#xff09;&#xff0c;能够使用SQL查询实时生成分析数据报告。 OLAP&…

算法魅力-二分查找实战

目录 前言 算法定义 朴素二分模版 二分查找 二分的边界查找 在排序数组中查找元素的第一个和最后一个位置&#xff08;medium&#xff09; 暴力算法 二分查找 边界查找分析 山峰数组的峰顶 暴力枚举 二分查找 搜索旋转排序数组中的最小值&#xff08;medium&#xf…

Linux第四讲:Git gdb

Linux第四讲&#xff1a;Git && gdb 1.版本控制器Git1.1理解版本控制1.2理解协作开发1.3Git的历史1.4Git的操作1.4.1仓库创建解释、仓库克隆操作1.4.2本地文件操作三板斧1.4.3文件推送详细问题 2.调试器 -- gdb/cgdb使用2.1调试的本质是什么2.2watch命令2.3set var命令…

海底捞点单

单点锅底推荐&#xff1a; 番茄锅底通31 牛油麻辣通44 清汤麻辣备44 菌汤锅底通31 小吃&主食&#xff1a; 捞派捞面一黄金小馒头一茴香小油条 红糖枇杷一小酥肉 DIY锅底推荐&#xff1a; 1.寿喜锅&#xff1a;海鲜味酱4勺陈醋1勺蚝油2勺盐适量白糖7勺 芹菜1勺 2.麻辣锅底…

PNG图片批量压缩exe工具+功能纯净+不改变原始尺寸

小编最近有一篇png图片要批量压缩&#xff0c;大小都在5MB之上&#xff0c;在网上找了半天要么就是有广告&#xff0c;要么就是有毒&#xff0c;要么就是功能复杂&#xff0c;整的我心烦意乱。 于是我自己用python写了一个纯净工具&#xff0c;只能压缩png图片&#xff0c;没任…

达梦8数据库适配ORACLE的8个参数

目录 1、概述 1.1 概述 1.2 实验环境 2、参数简介 3、实验部分 3.1 参数BLANK_PAD_MODE 3.2 参数COMPATIBLE_MODE 3.3 参数ORDER_BY_NULLS_FLAG 3.4 参数DATETIME_FMT_MODE 3.5 参数PL_SQLCODE_COMPATIBLE 3.6 参数CALC_AS_DECIMAL 3.7 参数ENABLE_PL_SYNONYM 3.8…

如何低成本、零代码开发、5分钟内打造一个企业AI智能客服?

传统客服因员工效率低、时段需求波动大、数据管理费时费力等管理难题&#xff0c;导致难以满足用户需求&#xff0c;无法深入挖掘客服数据价值&#xff0c;造成客源流失。而智能体搭建的“智能客服”能借助大模型和知识库知识&#xff0c;助力实现数字化运营&#xff0c;破解企…

CC1链学习记录

&#x1f338; 前言 上篇文章学习记录了URLDNS链&#xff0c;接下来学习一下Common-Colections利用链。 &#x1f338; 相关介绍 Common-Colections是Apache软件基金会的项目&#xff0c;对Java标准的Collections API提供了很好的补充&#xff0c;在其基础上对常用的数据结构…

【启明智显分享】5G CPE为什么适合应用在连锁店中?

连锁门店需要5G CPE来满足其日益增长的网络需求&#xff0c;提升整体运营效率和竞争力。那么为什么5G CPE适合连锁店应用呢&#xff0c;小编为此做了整理&#xff0c;主要是基于以下几个方面的原因&#xff1a; 一、高效稳定的网络连接 1、高速数据传输&#xff1a; 5G CPE能…