Ascend Extension for PyTorch的源码解析

1 源码下载

Ascend对pytorch代码的适配,可从以下链接中获取。
Ascend/pytorch
执行如下命令即可。

git clone https://gitee.com/ascend/pytorch.git

2 目录结构解析

源码下载后,如果需要编译torch-npu,最好保持pytorch的源码版本匹配,以及其编译环境的gcc,g++等与torch-npu的版本匹配,否则会出现各种乱起八糟的问题。

执行编译命令:bash ci/build.sh --python=3.x

如:


csrc/aten/AutoCastOps.cpp:28:70: error: macro "KERNEL_PRIVATEUSEONE" passed 3 arguments, but takes just 2
KERNEL_PRIVATEUSEONE(_convolution, deprecated, lower_precision_fp)

在torch-npu编译成功之后,通过generate_code.sh会生成如下文件:

    torch_npu/csrc/aten/ADInplaceOrViewTypeEverything.cpp
	torch_npu/csrc/aten/ADInplaceOrViewType_0.cpp
	torch_npu/csrc/aten/ADInplaceOrViewType_1.cpp
	torch_npu/csrc/aten/CustomFunctions.cpp
	torch_npu/csrc/aten/CustomFunctions.h
	torch_npu/csrc/aten/CustomRedispatch.cpp
	torch_npu/csrc/aten/CustomRedispatch.h
	torch_npu/csrc/aten/CustomRegisterSchema.cpp
	torch_npu/csrc/aten/ForeachRegister.cpp
	torch_npu/csrc/aten/Functions.cpp
	torch_npu/csrc/aten/Functions.h
	torch_npu/csrc/aten/NPUOpApiNativeFunctions.h
	torch_npu/csrc/aten/QuantizedRegister.cpp
	torch_npu/csrc/aten/RegisterFunctionalizationEverything.cpp
	torch_npu/csrc/aten/RegisterFunctionalization_0.cpp
	torch_npu/csrc/aten/RegisterFunctionalization_1.cpp
	torch_npu/csrc/aten/RegisterSparseCsrNPU.cpp
	torch_npu/csrc/aten/RegisterSparseNPU.cpp
	torch_npu/csrc/aten/VariableType.h
	torch_npu/csrc/aten/VariableTypeEverything.cpp
	torch_npu/csrc/aten/VariableType_0.cpp
	torch_npu/csrc/aten/npu_native_functions_by_codegen.yaml
	torch_npu/csrc/aten/python_functions.h
	torch_npu/csrc/aten/python_functionsEverything.cpp
	torch_npu/csrc/aten/python_functions_0.cpp
	torch_npu/csrc/aten/python_functions_1.cpp
	torch_npu/csrc/aten/variable_factories.h
	torch_npu/testing/_npu_testing_utils.py
	torch_npu/utils/custom_ops.py
	torch_npu/utils/exposed_api.py

上述文件生成路径默认的是torch_npu/csrc/aten。算子编译信息的yaml文件:torch_npu/csrc/aten/npu_native_functions.yaml

打开上述的的文件中,从中分析可知大概有3种方式实现昇腾npu算子的调用。

3. 算子注册方式

本质上,ascend上对pytroch框架的适配代码,主要是将npu上的算子库对接起来。如何对接这些算子,是一套机制的问题,本身应该不复杂。

3.1 通过torch的regsiter方式

直接调用npu的算子。torch_npu/csrc/aten/RegisterSparseNPU.cpp

TORCH_LIBRARY_IMPL(aten, SparsePrivateUse1, m) {
m.impl("abs", TORCH_FN(wrap_SparseNPU_abs_));
m.impl("abs_", TORCH_FN(wrap_SparseNPU_abs__));
m.impl("abs.out", TORCH_FN(wrap_SparseNPU_abs_out));
m.impl("sgn", TORCH_FN(wrap_SparseNPU_sgn_));
m.impl("sgn_", TORCH_FN(wrap_SparseNPU_sgn__));
m.impl("sgn.out", TORCH_FN(wrap_SparseNPU_sgn_out));

3.2 通过定义算子方式

参考文件:torch_npu/csrc/aten/CustomFunctions.cpp

#include <ATen/core/dispatch/Dispatcher.h>

#include "torch_npu/csrc/aten/CustomFunctions.h"


namespace at_npu {
namespace native {
namespace custom_ops {

int64_t npu_change_data_ptr(const at::Tensor & dst, const at::Tensor & src, int64_t index) {
    static auto op = c10::Dispatcher::singleton().findSchemaOrThrow("npu::npu_change_data_ptr", "").typed<int64_t (const at::Tensor &, const at::Tensor &, int64_t)>();
    return op.call(dst, src, index);
}
int64_t get_npu_format(const at::Tensor & self) {
    static auto op = c10::Dispatcher::singleton().findSchemaOrThrow("npu::get_npu_format", "").typed<int64_t (const at::Tensor &)>();
    return op.call(self);
}
at::Tensor npu_format_cast(const at::Tensor & self, const at::Tensor & dst) {
    static auto op = c10::Dispatcher::singleton().findSchemaOrThrow("npu::npu_format_cast", "Tensor").typed<at::Tensor (const at::Tensor &, const at::Tensor &)>();
    return op.call(self, dst);
}
at::Tensor & npu_format_cast_(at::Tensor & self, int64_t acl_format) {
    static auto op = c10::Dispatcher::singleton().findSchemaOrThrow("npu::npu_format_cast_", "acl_format").typed<at::Tensor & (at::Tensor &, int64_t)>();
    return op.call(self, acl_format);

 at::Tensor & npu_format_cast_(at::Tensor & self, const at::Tensor & src) {
    static auto op = c10::Dispatcher::singleton().findSchemaOrThrow("npu::npu_format_cast_", "").typed<at::Tensor & (at::Tensor &, const at::Tensor &)>();
    return op.call(self, src);
}
at::Tensor empty_with_format(at::IntArrayRef size, ::std::optional<at::ScalarType> dtype, ::std::optional<at::Layout> layout, ::std::optional<at::Device> device, ::std::optional<bool> pin_memory, int64_t acl_format) {
    static auto op = c10::Dispatcher::singleton().findSchemaOrThrow("npu::empty_with_format", "").typed<at::Tensor (at::IntArrayRef, ::std::optional<at::ScalarType>, ::std::optional<at::Layout>, ::std::optional<at::Device>, ::std::optional<bool>, int64_t)>();
    return op.call(size, dtype, layout, device, pin_memory, acl_format);
}
at::Tensor unsafe_empty_with_format(at::IntArrayRef size, ::std::optional<at::ScalarType> dtype, ::std::optional<at::Layout> layout, ::std::optional<at::Device> device, ::std::optional<bool> pin_memory, int64_t acl_format, bool keep_format) {
    static auto op = c10::Dispatcher::singleton().findSchemaOrThrow("npu::unsafe_empty_with_format", "").typed<at::Tensor (at::IntArrayRef, ::std::optional<at::ScalarType>, ::std::optional<at::Layout>, ::std::optional<at::Device>, ::std::optional<bool>, int64_t, bool)>();
    return op.call(size, dtype, layout, device, pin_memory, acl_format, keep_format);
}
 ~/pytorch-ascend/torch_npu/csrc/aten/CustomFunctions.cpp[1,RO]  

...

}
}
}

3.3 通过API重定向映射的方式

参考文件:torch_npu/utils/custom_ops.py

torch_npu.npu_layer_norm_eval = torch.ops.npu.npu_layer_norm_eval
torch_npu.npu_fused_attention_score_grad = torch.ops.npu.npu_fused_attention_score_grad
torch_npu.npu_quant_conv2d = torch.ops.npu.npu_quant_conv2d
torch_npu.npu_view_copy = torch.ops.npu.npu_view_copy
torch_npu.npu_fast_gelu = torch.ops.npu.npu_fast_gelu
torch_npu.npu_fused_attention_layernorm_qkv_fwd = torch.ops.npu.npu_fused_attention_layernorm_qkv_fwd
torch_npu.npu_fast_gelu_backward = torch.ops.npu.npu_fast_gelu_backward
torch_npu.npu_bmm_v2_mat1_backward = torch.ops.npu.npu_bmm_v2_mat1_backward

以上属于个人理解,如有错误敬请指正。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/912277.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

VLAN 高级技术实验

目录 一、实验背景 二、实验任务 三、实验步骤 四、实验总结 一、实验背景 假如你是公司的网络管理员&#xff0c;为了节省内网的IP地址空间&#xff0c;你决定在内网部署VLAN聚合&#xff0c;同时为了限制不同业务之间的访问&#xff0c;决定同时部署MUX VLAN。 二、实验…

一文快速预览经典深度学习模型(一)——CNN、RNN、LSTM、Transformer、ViT

Hi&#xff0c;大家好&#xff0c;我是半亩花海。本文主要简要并通俗地介绍了几种经典的深度学习模型&#xff0c;如CNN、RNN、LSTM、Transformer、ViT&#xff08;Vision Transformer&#xff09;等&#xff0c;便于大家初探深度学习的相关知识&#xff0c;并更好地理解深度学…

这是一个bug求助帖子--安装kali 遇坑

第一个报错 介质&#xff1a;kali-linux-2024.1-live-amd64 环境&#xff1a;Dell笔记本 i510代cpu 现象及操作 安装完以后 然后我换了个国内的源进行了以下操作 apt-get update&#xff1a;更新源列表 apt-get upgrade&#xff1a;更新所有可以更新的软件包 然后进行清理。…

qt QClipboard详解

1、概述 QClipboard是Qt框架中的一个类&#xff0c;它提供了对窗口系统剪贴板的访问能力。剪贴板是一个临时存储区域&#xff0c;通常用于在应用程序之间传递文本、图像和其他数据。QClipboard通过统一的接口来操作剪贴板内容&#xff0c;使得开发者能够方便地实现剪切、复制和…

PyTorch核心概念:从梯度、计算图到连续性的全面解析(三)

文章目录 Contiguous vs Non-Contiguous TensorTensor and ViewStrides非连续数据结构&#xff1a;Transpose( )在 PyTorch 中检查Contiguous and Non-Contiguous将不连续张量&#xff08;或视图&#xff09;转换为连续张量view() 和 reshape() 之间的区别总结 参考文献 Contig…

DeBiFormer实战:使用DeBiFormer实现图像分类任务(二)

文章目录 训练部分导入项目使用的库设置随机因子设置全局参数图像预处理与增强读取数据设置Loss设置模型设置优化器和学习率调整策略设置混合精度&#xff0c;DP多卡&#xff0c;EMA定义训练和验证函数训练函数验证函数调用训练和验证方法 运行以及结果查看测试完整的代码 在上…

iOS SmartCodable 替换 HandyJSON 适配记录

前言 HandyJSON群里说建议不要再使用HandyJSON&#xff0c;我最终选择了SmartCodable 来替换&#xff0c;原因如下&#xff1a; 首先按照 SmartCodable 官方教程替换 大概要替换的内容如图&#xff1a; 详细的替换教程请前往&#xff1a;使用SmartCodable 平替 HandyJSON …

Sqoop学习

目录 一、Soop简介 二、Sqoop的安装 1. 上传压缩包到/opt/install目录下 2.解压 3.修改文件名 4.拷贝sqoop-1.4.7.bin__hadoop-2.6.0目录下的sqoop-1.4.7.jar包到/opt/soft/sqoop147目录下 5.拷贝sqoop-1.4.7.bin__hadoop-2.6.0/lib目录下该jar包到sqoop/lib目录下 6.复…

WiFi一直获取不到IP地址是怎么回事?

在当今这个信息化时代&#xff0c;WiFi已成为我们日常生活中不可或缺的一部分。无论是家庭、办公室还是公共场所&#xff0c;WiFi都为我们提供了便捷的无线互联网接入。然而&#xff0c;有时我们可能会遇到WiFi连接后无法获取IP地址的问题&#xff0c;这不仅影响了我们的网络使…

FasterNet中Pconv的实现、效果与作用分析

发表时间&#xff1a;2023年3月7日 论文地址&#xff1a;https://arxiv.org/abs/2303.03667 项目地址&#xff1a;https://github.com/JierunChen/FasterNet FasterNet-t0在GPU、CPU和ARM处理器上分别比MobileViT-XXS快2.8、3.3和2.4&#xff0c;而准确率要高2.9%。我们的大型…

如何快速搭建一个spring boot项目

一、准备工作 1.1 安装JDK&#xff1a;确保计算机上已安装Java Development Kit (JDK) 8或更高版本、并配置了环境变量 1.2 安装Maven&#xff1a;下载并安装Maven构建工具&#xff0c;这是Spring Boot官方推荐的构建工具。 1.3 安装代码编辑器&#xff1a;这里推荐使用Inte…

从零开始训练一个大语言模型需要多少天?

一&#xff0c;前言 在AI领域&#xff0c;训练一个大型语言模型&#xff08;LLM&#xff09;是一个耗时且复杂的过程。几乎每个做大型语言模型&#xff08;LLM&#xff09;训练的人都会被问到&#xff1a;“从零开始&#xff0c;训练大语言模型需要多久和花多少钱&#xff1f;”…

成大事者,不外传的心计

成大事者&#xff0c;不外传的心计&#xff1a; 1.男人要避开闺蜜众多的女人。 2.追求女生&#xff0c;不可过于主动&#xff0c;心急难以品尝到热豆腐的美味。 3.倘若这个人身边没什么朋友&#xff0c;那就要赶快远离。 4.让利&#xff0c;是拓展人脉资源的有效法门。 5.…

如何将数据从 AWS S3 导入到 Elastic Cloud - 第 3 部分:Elastic S3 连接器

作者&#xff1a;来自 Elastic Hemendra Singh Lodhi 了解将数据从 AWS S3 导入 Elastic Cloud 的不同选项。这次我们将重点介绍 Elastic S3 Connector。 这是多部分博客系列的第三部分&#xff0c;探讨了将数据从 AWS S3 导入 Elastic Cloud 的不同选项。 在本博客中&#xf…

产品经理如何使用项目管理软件推进复杂项目按时上线

前言 相信很多产品同学或多或少都有过这样的经历&#xff1a;平时没有听到任何项目延期风险&#xff0c;但到了计划时间却迟迟无法提测……评审时没有任何argue&#xff0c;提测后发现开发的功能不是自己想要的……费劲九牛二虎之力终于让项目上线了&#xff0c;然而发现成果达…

K8S node节点没有相应的pod镜像运行故障处理办法

查看从节点状态 kubectl describe node k8s-node1以下是报错提示 解决办法 需要处理node1节点上的磁盘空间&#xff0c;磁盘空间需要在85%内 处理后的状态 处理正常

11.9.2024刷华为

文章目录 HJ31 单词倒排HJ32 密码提取语法知识记录 傻逼OD题目又不全又要收费&#xff0c;看毛线&#xff0c;莫名奇妙 HW这叼机构别搁这儿害人得不得&#xff1f; 我觉得我刷完原来的题目 过一遍华为机考的ED卷出处&#xff0c;就行了 HJ31 单词倒排 游戏本做过了好像 HJ3…

Colmap3.8 [CUDA]和[NO CUDA]版本

Colmap3.8 [CUDA]和[NO CUDA]版本的下载地址如下所示&#xff1a; 通过百度网盘分享的文件&#xff1a;colmap3.8 链接&#xff1a;https://pan.baidu.com/s/1kfbUqFI5N2t8Bx2MasFKXQ?pwd998n 提取码&#xff1a;998n 解压即可使用&#xff0c;运行时&#xff0c;点击下图…

sealos部署K8s,安装docker时master节点突然NotReady

1、集群正常运行中&#xff0c;在集群master-1上安装了dockerharbor&#xff0c;却发现master-1节点NotReady&#xff0c;使用的网络插件为 Cilium #安装docker和harbor&#xff08;docker运行正常&#xff09; rootmaster-1:/etc/apt# apt install docker-ce5:19.03.15~3-0~u…

NoETL自动化指标平台为数据分析提质增效,驱动业务决策

直觉判断往往来源于多年的经验和专业知识&#xff0c;能够在复杂和不确定的环境中快速做出决策反应。但这种方式普遍存在主观偏见&#xff0c;缺乏合理的科学依据&#xff0c;无法全面、客观、精准地评估和识别市场趋势与用户需求&#xff0c;从而造成决策失误&#xff0c;给业…