【考研数学】线性代数第四章 —— 线性方程组(1,基本概念 | 基本定理 | 解的结构)

文章目录

  • 引言
  • 一、线性方程组的基本概念与表达形式
  • 二、线性方程组解的基本定理
  • 三、线性方程组解的结构
  • 写在最后


引言

继向量的学习后,一鼓作气,把线性方程组也解决了去。O.O


一、线性方程组的基本概念与表达形式

方程组
在这里插入图片描述
称为 n n n 元齐次线性方程组。

方程组
在这里插入图片描述
称为 n n n 元非齐次线性方程组。

方程组(I)又称为方程组(II)对应的齐次线性方程组或导出方程组。

方程组(I)和方程组(II)分别称为齐次线性方程组和非齐次线性方程组的基本形式。

α 1 = ( a 11 , a 21 , … , a m 1 ) T , α 2 = ( a 12 , a 22 , … , a m 2 ) T , … , α n = ( a 1 n , a 2 n , … , a m n ) T , b = ( b 1 , b 2 , … , b m ) T \alpha_1=(a_{11},a_{21},\dots,a_{m1})^T,\alpha_2=(a_{12},a_{22},\dots,a_{m2})^T,\dots,\alpha_n=(a_{1n},a_{2n},\dots,a_{mn})^T,b=(b_{1},b_{2},\dots,b_{m})^T α1=(a11,a21,,am1)T,α2=(a12,a22,,am2)T,,αn=(a1n,a2n,,amn)T,b=(b1,b2,,bm)T ,则方程组(I)(II)可表示为如下向量形式: x 1 α 1 + x 2 α 2 + ⋯ + x n α n = 0 ( 1.1 ) x_1\alpha_1+x_2\alpha_2+\dots+x_n\alpha_n=0 (1.1) x1α1+x2α2++xnαn=01.1 x 1 α 1 + x 2 α 2 + ⋯ + x n α n = b ( 2.1 ) x_1\alpha_1+x_2\alpha_2+\dots+x_n\alpha_n=b (2.1) x1α1+x2α2++xnαn=b2.1

X = ( x 1 , x 2 , … , x n ) T X=(x_1,x_2,\dots,x_n)^T X=(x1,x2,,xn)T ,矩阵 A = [ α 1 , α 2 , … , α n ] A=[\alpha_1,\alpha_2,\dots,\alpha_n] A=[α1,α2,,αn] ,即
在这里插入图片描述
则方程组(I)(II)可表示为如下矩阵形式: A X = 0 ( 1.2 ) AX=0(1.2) AX=01.2 A X = b ( 2.2 ) AX=b(2.2) AX=b2.2


二、线性方程组解的基本定理

其实就是前面我们在学向量时就已经总结过的,矩阵、向量和线性方程组解的关系,传送门。

  • 齐次方程组只有零解 ⇔ \Leftrightarrow 向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性无关 ⇔ \Leftrightarrow r ( A ) = n . r(A)=n. r(A)=n.
  • 齐次方程组有非零解 ⇔ \Leftrightarrow 向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性相关 ⇔ \Leftrightarrow r ( A ) < n . r(A)<n. r(A)<n.

特别地,如果系数矩阵 A A A n n n 阶方阵,还有以下结论:

  • 齐次方程组只有零解 ⇔ \Leftrightarrow ∣ A ∣ ≠ 0. |A| \ne 0. A=0.
  • 齐次方程组有非零解 ⇔ \Leftrightarrow ∣ A ∣ = 0. |A| = 0. A=0.

对于非齐次方程组解的情况,我们可对有解的情况进一步讨论。

  • 非齐次方程组有解 ⇔ \Leftrightarrow r ( A ‾ ) = r ( A ) . r(\overline{A})=r(A). r(A)=r(A).
    • 非齐次方程组有唯一解 ⇔ \Leftrightarrow r ( A ) = n . r(A)=n. r(A)=n.
    • 非齐次方程组有无数解 ⇔ \Leftrightarrow r ( A ) < n . r(A)<n. r(A)<n.
  • 非齐次方程组无解 ⇔ \Leftrightarrow r ( A ‾ ) = r ( A ) + 1. r(\overline{A})=r(A)+1. r(A)=r(A)+1.

特别地,如果系数矩阵 A A A n n n 阶方阵,还有以下结论:

  • 非齐次方程组有解 ⇔ \Leftrightarrow r ( A ‾ ) = r ( A ) . r(\overline{A})=r(A). r(A)=r(A).
    • 非齐次方程组有唯一解 ⇔ \Leftrightarrow ∣ A ∣ ≠ 0. |A| \ne 0. A=0.
    • 非齐次方程组有无数解 ⇔ \Leftrightarrow ∣ A ∣ = 0. |A|=0. A=0.
  • 非齐次方程组无解 ⇔ \Leftrightarrow r ( A ‾ ) = r ( A ) + 1. r(\overline{A})=r(A)+1. r(A)=r(A)+1.

在学向量时就已经讨论了矩阵、向量和方程组解的关系的话,现在来学就会非常轻松。

对于系数矩阵是方阵的方程组,无非就是将行列式和秩联系了起来。如果矩阵的秩那一部分学得到位,也不是什么难点。因此如果要记忆就记忆秩的关系就好,行列式的结论自然能想到。


三、线性方程组解的结构

  1. X 1 , X 2 , … , X s \pmb{X_1,X_2,\dots,X_s} X1,X2,,Xs 为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的一组解,则 k 1 X 1 + k 2 X 2 + ⋯ + k s X s k_1X_1+k_2X_2+\dots +k_sX_s k1X1+k2X2++ksXs 也为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的解,其中 k 1 , k 2 , … , k s k_1,k_2,\dots,k_s k1,k2,,ks 为任意常数。
  2. η 0 \pmb{\eta_0} η0 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的一个解, X 1 , X 2 , … , X s \pmb{X_1,X_2,\dots,X_s} X1,X2,,Xs 为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的一组解,则 k 1 X 1 + k 2 X 2 + ⋯ + k s X s + η 0 k_1X_1+k_2X_2+\dots +k_sX_s+\pmb{\eta_0} k1X1+k2X2++ksXs+η0 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的解。
  3. η 1 , η 2 \pmb{\eta_1,\eta_2} η1,η2 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的两个解,则 η 1 − η 2 \pmb{\eta_1-\eta_2} η1η2 为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的解。
  4. X 1 , X 2 , … , X s \pmb{X_1,X_2,\dots,X_s} X1,X2,,Xs 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的一组解,若 k 1 X 1 + k 2 X 2 + ⋯ + k s X s k_1X_1+k_2X_2+\dots +k_sX_s k1X1+k2X2++ksXs 也为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的解的充要条件是 k 1 + k 2 + ⋯ + k s = 1. k_1+k_2+\dots+k_s=1. k1+k2++ks=1.
  5. X 1 , X 2 , … , X s \pmb{X_1,X_2,\dots,X_s} X1,X2,,Xs 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的一组解,若 k 1 X 1 + k 2 X 2 + ⋯ + k s X s k_1X_1+k_2X_2+\dots +k_sX_s k1X1+k2X2++ksXs 为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的解的充要条件是 k 1 + k 2 + ⋯ + k s = 0. k_1+k_2+\dots+k_s=0. k1+k2++ks=0.

是不是有点熟悉,特别像我们在微分方程中学的关于高阶线性微分方程的解的结构。

  1. 齐次解线性组合仍为齐次解。
  2. 齐次解 + 非齐次解为非齐次解。
  3. 非齐次解相减为齐次解。
  4. 非齐次解线性组合,系数之和为 1 才是非齐次解。
  5. 非齐次解线性组合,系数之和为 0 才是齐次解。

写在最后

线性方程组还有些内容,是关于计算的,我们放在后面来细说!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/91172.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Postman —— postman实现参数化

什么时候会用到参数化 比如&#xff1a;一个模块要用多组不同数据进行测试 验证业务的正确性 Login模块&#xff1a;正确的用户名&#xff0c;密码 成功&#xff1b;错误的用户名&#xff0c;正确的密码 失败 postman实现参数化 在实际的接口测试中&#xff0c;部分参数每…

Docker安装及Docker构建简易版Hadoop生态

一、首先在VM创建一个新的虚拟机将Docker安装好 更新系统&#xff1a;首先打开终端&#xff0c;更新系统包列表。 sudo apt-get update sudo apt-get upgrade下图是更新系统包截图 安装Docker&#xff1a;使用以下命令在Linux上安装Docker。 sudo apt-get install -y docker.i…

python爬虫实战零基础(3)——某云音乐

爬取某些云网页音乐&#xff0c;无需app 分析网页第二种方式批量爬取 声明&#xff1a;仅供参考学习&#xff0c;参考&#xff0c;若有不足&#xff0c;欢迎指正 你是不是遇到过这种情况&#xff0c;在pc端上音乐无法下载&#xff0c;必须下载客户端才能下载&#xff1f; 那么&…

开源与数据科学:一个完美的组合?

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

JMeter性能测试(上)

一、基础简介 界面 打开方式 双击 jmeter.bat双击 ApacheJMeter.jsr命令行输入 java -jar ApacheJMeter.jar 目录 BIN 目录&#xff1a;存放可执行文件和配置文件 docs目录&#xff1a;api文档&#xff0c;用于开发扩展组件 printable-docs目录&#xff1a;用户帮助手册 li…

Springboot_Redis

Springboot默认使用lettuce操作redis,底层是netty jdeis并发差些 Redis的Template 分为两种, 一种是StringRedisTemplate&#xff0c;另一种是RedisTemplate 根据不同的数据类型&#xff0c;大致的操作也分为这5种&#xff0c;以StringRedisTemplate为例 stringRedisTempla…

阿里云将关停代销业务

我是卢松松&#xff0c;点点上面的头像&#xff0c;欢迎关注我哦&#xff01; 阿里云自从逐渐分拆独立之后&#xff0c;做了很多调整。最近它又做了一个大动作&#xff1a;据DoNews消息&#xff0c;阿里云将会在今年9月30日之前&#xff0c;全面关停代销业务。 这件事实际上…

MyBatis 动态SQL的标签有哪些?如何使用?

目录 1. MyBatis 动态SQL标签有什么用&#xff1f; 2. if 标签 3. where 标签 4. trim 标签 5. choose&#xff0c;when&#xff0c;otherwise 6. foreach 1. MyBatis 动态SQL标签有什么用&#xff1f; 我来说一个场景大家就明白了&#xff0c;如下图&#xff0c;大家应该…

【3D激光SLAM】LOAM源代码解析--laserOdometry.cpp

系列文章目录 【3D激光SLAM】LOAM源代码解析–scanRegistration.cpp 【3D激光SLAM】LOAM源代码解析–laserOdometry.cpp 【3D激光SLAM】LOAM源代码解析–laserMapping.cpp 【3D激光SLAM】LOAM源代码解析–transformMaintenance.cpp 写在前面 本系列文章将对LOAM源代码进行讲解…

什么是回调函数(callback function)?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 回调函数&#xff08;Callback Function&#xff09;⭐ 示例⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&#xff01;这…

Unity中实现获取InputField选中的文字

一&#xff1a;前言 获取到选中的文字&#xff1a;哈哈 二&#xff1a;实现 UGUI的InputField提供了selectionAnchorPosition和selectionFocusPosition&#xff0c;开始选择时的光标下标和当前光标下标 using UnityEngine; using UnityEngine.EventSystems; using UnityEngin…

记录一个诡异的bug

将对接oa跳转到会议转写的项目oa/meetingtranslate项目发布到天宫&#xff0c;结果跳转到successPage后报错 这一看就是successPage接口名没对上啊&#xff0c;查了一下代码&#xff0c;没问题啊。 小心起见&#xff0c;我就把successPage的方法请求方式从Post改为Get和POST都…

第61步 深度学习图像识别:多分类建模(TensorFlow)

基于WIN10的64位系统演示 一、写在前面 截至上期&#xff0c;我们一直都在做二分类的任务&#xff0c;无论是之前的机器学习任务&#xff0c;还是最近更新的图像分类任务。然而&#xff0c;在实际工作中&#xff0c;我们大概率需要进行多分类任务。例如肺部胸片可不仅仅能诊断…

元矿山下的音视频应用

// 近年来&#xff0c;矿业的技术和管理模式随着元宇宙的火爆和自动驾驶技术的发展逐渐变化、升级&#xff0c;进而衍生出元矿山的概念&#xff0c;音视频技术也在其中成为了关键一环。LiveVideoStackCon 2023 上海站邀请了来自希迪智驾的任思亮&#xff0c;为大家分享希迪智…

算法通过村第三关-数组黄金笔记|数组难解

文章目录 前言数组中出现超过一半的数字数组中只出现一次的数字颜色的分类问题(荷兰国旗问题)基于冒泡排序的双指针&#xff08;快慢指针&#xff09;基于快排的双指针&#xff08;对撞指针&#xff09; 总结 前言 提示&#xff1a;苦不来自外在环境中的人、事、物&#xff0c;…

yolov8热力图可视化

安装pytorch_grad_cam pip install grad-cam自动化生成不同层的bash脚本 # 循环10次&#xff0c;将i的值从0到9 for i in $(seq 0 13) doecho "Running iteration $i";python yolov8_heatmap.py $i; done热力图生成python代码 import warnings warnings.filterwarn…

使用秘籍|如何实现图数据库 NebulaGraph 的高效建模、快速导入、性能优化

本文整理自 NebulaGraph PD 方扬在「NebulaGraph x KubeBlocks」meetup 上的演讲&#xff0c;主要包括以下内容&#xff1a; NebulaGraph 3.x 发展历程NebulaGraph 最佳实践 建模篇导入篇查询篇 NebulaGraph 3.x 的发展历程 NebulaGraph 自 2019 年 5 月开源发布第一个 alp…

【Spring MVC】

目录 &#x1f36e;1 什么是 MVC &#xff1f; &#x1f381;2 Spring MVC 的连接 &#x1f358;2.1 RequestMapping 实现 POST 和 GET 请求 &#x1f963;2.2 GetMapping 只支持 GET 请求 &#x1fad6;2.3 PostMapping 只支持 POST 请求 &#x1f36c;3 Spring MVC 获取参数的…

创建本地镜像

通过前面文章的阅读&#xff0c;读者已经了解到所谓的容器实际上是在父镜像的基础上创建了一个可读写的文件层级&#xff0c;所有的修改操作都在这个文件层级上进行&#xff0c;而父镜像并未受影响&#xff0c;如果读者需要根据这种修改创建一个新的本地镜像&#xff0c;有两种…