第61步 深度学习图像识别:多分类建模(TensorFlow)

基于WIN10的64位系统演示

一、写在前面

截至上期,我们一直都在做二分类的任务,无论是之前的机器学习任务,还是最近更新的图像分类任务。然而,在实际工作中,我们大概率需要进行多分类任务。例如肺部胸片可不仅仅能诊断肺结核,还有COVID-19、细菌性(病毒性)肺炎等等,这就涉及到图像识别的多分类任务。

本期以健康组、肺结核组、COVID-19组、细菌性(病毒性)肺炎组为数据集,构建Mobilenet多分类模型,原因还是因为它建模速度快。

同样,基于GPT-4辅助编程,改写过程见后面。

二、误判病例分析实战

使用胸片的数据集:肺结核病人和健康人的胸片的识别。其中,健康人900张,肺结核病人700张,COVID-19病人549张、细菌性(病毒性)肺炎组900张,分别存入单独的文件夹中。

(a)直接分享代码

######################################导入包###################################
from tensorflow import keras
import tensorflow as tf
from tensorflow.python.keras.layers import Dense, Flatten, Conv2D, MaxPool2D, Dropout, Activation, Reshape, Softmax, GlobalAveragePooling2D, BatchNormalization
from tensorflow.python.keras.layers.convolutional import Convolution2D, MaxPooling2D
from tensorflow.python.keras import Sequential
from tensorflow.python.keras import Model
from tensorflow.python.keras.optimizers import adam_v2
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator, image_dataset_from_directory
from tensorflow.python.keras.layers.preprocessing.image_preprocessing import RandomFlip, RandomRotation, RandomContrast, RandomZoom, RandomTranslation
import os,PIL,pathlib
import warnings
#设置GPU
gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")
    
warnings.filterwarnings("ignore")             #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False    # 用来正常显示负号


################################导入数据集#####################################
#1.导入数据
#1.导入数据
data_dir = "./MTB-1" # 修改了路径
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:",image_count)

batch_size = 32
img_height = 100
img_width  = 100

train_ds = image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)

val_ds = image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)

class_names = train_ds.class_names
print(class_names)
print(train_ds)


#2.检查数据
for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

#3.配置数据
AUTOTUNE = tf.data.AUTOTUNE

def train_preprocessing(image,label):
    return (image/255.0,label)

train_ds = (
    train_ds.cache()
    .shuffle(800)
    .map(train_preprocessing)    # 这里可以设置预处理函数
#     .batch(batch_size)           # 在image_dataset_from_directory处已经设置了batch_size
    .prefetch(buffer_size=AUTOTUNE)
)

val_ds = (
    val_ds.cache()
    .map(train_preprocessing)    # 这里可以设置预处理函数
#     .batch(batch_size)         # 在image_dataset_from_directory处已经设置了batch_size
    .prefetch(buffer_size=AUTOTUNE)
)

#4. 数据可视化
plt.figure(figsize=(10, 8))  # 图形的宽为10高为5
plt.suptitle("数据展示")

class_names = ["COVID-19", "Normal", "Pneumonia", "Tuberculosis"] # 修改类别标签

for images, labels in train_ds.take(1):
    for i in range(15):
        plt.subplot(4, 5, i + 1)
        plt.xticks([])
        plt.yticks([])
        plt.grid(False)

        # 显示图片
        plt.imshow(images[i])
        # 显示标签
        plt.xlabel(class_names[labels[i]-1])

plt.show()

######################################数据增强函数################################

data_augmentation = Sequential([
  RandomFlip("horizontal_and_vertical"),
  RandomRotation(0.2),
  RandomContrast(1.0),
  RandomZoom(0.5,0.2),
  RandomTranslation(0.3,0.5),
])

def prepare(ds):
    ds = ds.map(lambda x, y: (data_augmentation(x, training=True), y), num_parallel_calls=AUTOTUNE)
    return ds
train_ds = prepare(train_ds)


###############################导入mobilenet_v2################################
#获取预训练模型对输入的预处理方法
from tensorflow.python.keras.applications import mobilenet_v2
from tensorflow.python.keras import Input, regularizers
IMG_SIZE = (img_height, img_width, 3)

base_model = mobilenet_v2.MobileNetV2(input_shape=IMG_SIZE, 
                                      include_top=False, #是否包含顶层的全连接层
                                      weights='imagenet')

inputs = Input(shape=IMG_SIZE)
#模型
x = base_model(inputs, training=False) #参数不变化
#全局池化
x = GlobalAveragePooling2D()(x)
#BatchNormalization
x = BatchNormalization()(x)
#Dropout
x = Dropout(0.8)(x)
#Dense
x = Dense(128, kernel_regularizer=regularizers.l2(0.1))(x)  # 全连接层减少到128,添加 L2 正则化
#BatchNormalization
x = BatchNormalization()(x)
#激活函数
x = Activation('relu')(x)
#输出层
outputs = Dense(4, kernel_regularizer=regularizers.l2(0.1))(x)  # 输出层神经元数量修改为4
#BatchNormalization
outputs = BatchNormalization()(outputs)
#激活函数
outputs = Activation('softmax')(outputs) # 激活函数修改为'softmax'
#整体封装
model = Model(inputs, outputs)
#打印模型结构
print(model.summary())
#############################编译模型#########################################
#定义优化器
from tensorflow.python.keras.optimizers import adam_v2, rmsprop_v2
#from tensorflow.python.keras.optimizer_v2.gradient_descent import SGD
optimizer = adam_v2.Adam()
#optimizer = SGD(learning_rate=0.001)
#optimizer = rmsprop_v2.RMSprop()

#常用的优化器
#all_classes = {
#      'adadelta': adadelta_v2.Adadelta,
#     'adagrad': adagrad_v2.Adagrad,
#     'adam': adam_v2.Adam,
#      'adamax': adamax_v2.Adamax,
#      'experimentaladadelta': adadelta_experimental.Adadelta,
#      'experimentaladagrad': adagrad_experimental.Adagrad,
#      'experimentaladam': adam_experimental.Adam,
#      'experimentalsgd': sgd_experimental.SGD,
#      'nadam': nadam_v2.Nadam,
#      'rmsprop': rmsprop_v2.RMSprop,

#编译模型
model.compile(optimizer=optimizer,
                loss='sparse_categorical_crossentropy', # 多分类问题
                metrics=['accuracy'])

#训练模型
from tensorflow.python.keras.callbacks import ModelCheckpoint, Callback, EarlyStopping, ReduceLROnPlateau, LearningRateScheduler

NO_EPOCHS = 50
PATIENCE  = 10
VERBOSE   = 1

# 设置动态学习率
annealer = LearningRateScheduler(lambda x: 1e-5 * 0.99 ** (x+NO_EPOCHS))

# 设置早停
earlystopper = EarlyStopping(monitor='loss', patience=PATIENCE, verbose=VERBOSE)

# 
checkpointer = ModelCheckpoint('mtb_4_jet_best_model_mobilenetv3samll.h5',
                                monitor='val_accuracy',
                                verbose=VERBOSE,
                                save_best_only=True,
                                save_weights_only=True)

train_model  = model.fit(train_ds,
                  epochs=NO_EPOCHS,
                  verbose=1,
                  validation_data=val_ds,
                  callbacks=[earlystopper, checkpointer, annealer])

#保存模型
model.save('mtb_4_jet_best_model_mobilenet.h5')
print("The trained model has been saved.")

from tensorflow.python.keras.models import load_model
train_model=load_model('mtb_4_jet_best_model_mobilenet.h5')
###########################Accuracy和Loss可视化#################################
import matplotlib.pyplot as plt

loss = train_model.history['loss']
acc = train_model.history['accuracy']
val_loss = train_model.history['val_loss']
val_acc = train_model.history['val_accuracy']
epoch = range(1, len(loss)+1)

fig, ax = plt.subplots(1, 2, figsize=(10,4))
ax[0].plot(epoch, loss, label='Train loss')
ax[0].plot(epoch, val_loss, label='Validation loss')
ax[0].set_xlabel('Epochs')
ax[0].set_ylabel('Loss')
ax[0].legend()
ax[1].plot(epoch, acc, label='Train acc')
ax[1].plot(epoch, val_acc, label='Validation acc')
ax[1].set_xlabel('Epochs')
ax[1].set_ylabel('Accuracy')
ax[1].legend()
#plt.show()
plt.savefig("loss-acc.pdf", dpi=300,format="pdf")

####################################混淆矩阵可视化#############################
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.python.keras.models import load_model
from matplotlib.pyplot import imshow
from sklearn.metrics import classification_report, confusion_matrix
import seaborn as sns
import pandas as pd
import math
from sklearn.metrics import precision_recall_fscore_support, accuracy_score

# 定义一个绘制混淆矩阵图的函数
def plot_cm(labels, predictions, class_names):
    # 生成混淆矩阵
    conf_numpy = confusion_matrix(labels, predictions)
    # 将矩阵转化为 DataFrame
    conf_df = pd.DataFrame(conf_numpy, index=class_names ,columns=class_names)  
    
    plt.figure(figsize=(8,7))
    
    sns.heatmap(conf_df, annot=True, fmt="d", cmap="BuPu")
    
    plt.title('Confusion matrix',fontsize=15)
    plt.ylabel('Actual value',fontsize=14)
    plt.xlabel('Predictive value',fontsize=14)

val_pre   = []
val_label = []
for images, labels in val_ds:
    for image, label in zip(images, labels):
        img_array = tf.expand_dims(image, 0)
        prediction = model.predict(img_array)
        val_pre.append(np.argmax(prediction, axis=-1))
        val_label.append(label.numpy())  # 需要将标签转换为 numpy 数组

class_names = ['COVID-19', 'Normal', 'Pneumonia', 'Tuberculosis']  # 修改为你的类别名称
plot_cm(val_label, val_pre, class_names)
plt.savefig("val-cm.pdf", dpi=300,format="pdf")

precision_val, recall_val, f1_val, _ = precision_recall_fscore_support(val_label, val_pre, average='micro')
acc_val = accuracy_score(val_label, val_pre)
error_rate_val = 1 - acc_val

print("验证集的灵敏度(召回率)为:",recall_val, 
      "验证集的特异度为:",precision_val,  # 在多分类问题中,特异度定义不明确,这里我们使用精确度来代替
      "验证集的准确率为:",acc_val, 
      "验证集的错误率为:",error_rate_val,
      "验证集的F1为:",f1_val)

train_pre   = []
train_label = []
for images, labels in train_ds:
    for image, label in zip(images, labels):
        img_array = tf.expand_dims(image, 0)
        prediction = model.predict(img_array)
        train_pre.append(np.argmax(prediction, axis=-1))
        train_label.append(label.numpy())

plot_cm(train_label, train_pre, class_names)
plt.savefig("train-cm.pdf", dpi=300,format="pdf")

precision_train, recall_train, f1_train, _ = precision_recall_fscore_support(train_label, train_pre, average='micro')
acc_train = accuracy_score(train_label, train_pre)
error_rate_train = 1 - acc_train

print("训练集的灵敏度(召回率)为:",recall_train, 
      "训练集的特异度为:",precision_train,  # 在多分类问题中,特异度定义不明确,这里我们使用精确度来代替
      "训练集的准确率为:",acc_train, 
      "训练集的错误率为:",error_rate_train,
      "训练集的F1为:",f1_train)


################################模型性能参数计算################################
from sklearn import metrics

def test_accuracy_report(model):
    print(metrics.classification_report(val_label, val_pre, target_names=class_names)) 
    score = model.evaluate(val_ds, verbose=0)
    print('Loss function: %s, accuracy:' % score[0], score[1])
    
test_accuracy_report(model)

def train_accuracy_report(model):
    print(metrics.classification_report(train_label, train_pre, target_names=class_names)) 
    score = model.evaluate(train_ds, verbose=0)
    print('Loss function: %s, accuracy:' % score[0], score[1])
    
train_accuracy_report(model)

################################AUC曲线绘制####################################
from sklearn import metrics
from sklearn.preprocessing import LabelBinarizer
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.python.keras.models import load_model
from matplotlib.pyplot import imshow
from sklearn.metrics import classification_report, confusion_matrix
import seaborn as sns
import pandas as pd
import math

def plot_roc(name, labels, predictions, **kwargs):
    fp, tp, _ = metrics.roc_curve(labels, predictions)

    plt.plot(fp, tp, label=name, linewidth=2, **kwargs)
    plt.xlabel('False positives rate')
    plt.ylabel('True positives rate')
    ax = plt.gca()
    ax.set_aspect('equal')

# 需要将标签进行one-hot编码
lb = LabelBinarizer()
lb.fit([0, 1, 2, 3])  # 训练标签编码器,这里设定有四个类别
n_classes = 4  # 类别数量

val_pre_auc   = []
val_label_auc = []

for images, labels in val_ds:
    for image, label in zip(images, labels):      
        img_array = tf.expand_dims(image, 0) 
        prediction_auc = model.predict(img_array)
        val_pre_auc.append(prediction_auc[0])
        val_label_auc.append(lb.transform([label])[0])  # 这里需要使用标签编码器进行编码

val_pre_auc = np.array(val_pre_auc)
val_label_auc = np.array(val_label_auc)

auc_score_val = [metrics.roc_auc_score(val_label_auc[:, i], val_pre_auc[:, i]) for i in range(n_classes)]


train_pre_auc   = []
train_label_auc = []

for images, labels in train_ds:
    for image, label in zip(images, labels):
        img_array_train = tf.expand_dims(image, 0) 
        prediction_auc = model.predict(img_array_train)
        train_pre_auc.append(prediction_auc[0])
        train_label_auc.append(lb.transform([label])[0])

train_pre_auc = np.array(train_pre_auc)
train_label_auc = np.array(train_label_auc)

auc_score_train = [metrics.roc_auc_score(train_label_auc[:, i], train_pre_auc[:, i]) for i in range(n_classes)]

for i in range(n_classes):
    plot_roc('validation AUC for class {0}: {1:.4f}'.format(i, auc_score_val[i]), val_label_auc[:, i] , val_pre_auc[:, i], color="red", linestyle='--')
    plot_roc('training AUC for class {0}: {1:.4f}'.format(i, auc_score_train[i]), train_label_auc[:, i], train_pre_auc[:, i], color="blue", linestyle='--')

plt.legend(loc='lower right')
plt.savefig("roc.pdf", dpi=300,format="pdf")

for i in range(n_classes):
    print("Class {0} 训练集的AUC值为:".format(i), auc_score_train[i], "验证集的AUC值为:", auc_score_val[i])


################################AUC曲线绘制-分开展示####################################
from sklearn import metrics
from sklearn.preprocessing import LabelBinarizer
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.python.keras.models import load_model
from matplotlib.pyplot import imshow
from sklearn.metrics import classification_report, confusion_matrix
import seaborn as sns
import pandas as pd
import math

def plot_roc(ax, name, labels, predictions, **kwargs):
    fp, tp, _ = metrics.roc_curve(labels, predictions)
    ax.plot(fp, tp, label=name, linewidth=2, **kwargs)
    ax.plot([0, 1], [0, 1], color='orange', linestyle='--')
    ax.set_xlabel('False positives rate')
    ax.set_ylabel('True positives rate')
    ax.set_aspect('equal')

# 需要将标签进行one-hot编码
lb = LabelBinarizer()
lb.fit([0, 1, 2, 3])  # 训练标签编码器,这里设定有四个类别
n_classes = 4  # 类别数量

val_pre_auc   = []
val_label_auc = []

for images, labels in val_ds:
    for image, label in zip(images, labels):      
        img_array = tf.expand_dims(image, 0) 
        prediction_auc = model.predict(img_array)
        val_pre_auc.append(prediction_auc[0])
        val_label_auc.append(lb.transform([label])[0])  # 这里需要使用标签编码器进行编码

val_pre_auc = np.array(val_pre_auc)
val_label_auc = np.array(val_label_auc)

auc_score_val = [metrics.roc_auc_score(val_label_auc[:, i], val_pre_auc[:, i]) for i in range(n_classes)]


train_pre_auc   = []
train_label_auc = []

for images, labels in train_ds:
    for image, label in zip(images, labels):
        img_array_train = tf.expand_dims(image, 0) 
        prediction_auc = model.predict(img_array_train)
        train_pre_auc.append(prediction_auc[0])
        train_label_auc.append(lb.transform([label])[0])

train_pre_auc = np.array(train_pre_auc)
train_label_auc = np.array(train_label_auc)

auc_score_train = [metrics.roc_auc_score(train_label_auc[:, i], train_pre_auc[:, i]) for i in range(n_classes)]

fig, axs = plt.subplots(n_classes, figsize=(5, 20))

for i in range(n_classes):
    plot_roc(axs[i], 'validation AUC for class {0}: {1:.4f}'.format(i, auc_score_val[i]), val_label_auc[:, i] , val_pre_auc[:, i], color="red", linestyle='--')
    plot_roc(axs[i], 'training AUC for class {0}: {1:.4f}'.format(i, auc_score_train[i]), train_label_auc[:, i], train_pre_auc[:, i], color="blue", linestyle='--')
    axs[i].legend(loc='lower right')

plt.tight_layout()
plt.savefig("roc.pdf", dpi=300,format="pdf")

for i in range(n_classes):
    print("Class {0} 训练集的AUC值为:".format(i), auc_score_train[i], "验证集的AUC值为:", auc_score_val[i])

(b)调教GPT-4的过程

(b1)咒语:请根据{代码1},改写和续写《代码2》。代码1:{也就是之前用tensorflow写的误判病例分析部分};代码2:《也就是修改之前的Mobilenet模型建模代码》

然后根据具体情况调整即可,当然是在GPT的帮助下。

三、输出结果

(1)学习曲线

(2)混淆矩阵

(3)性能参数

(4)ROC曲线

(4.1)和在一起的:

 (4.2)分开的:

 

四、数据

链接:https://pan.baidu.com/s/1rqu15KAUxjNBaWYfEmPwgQ?pwd=xfyn

提取码:xfyn

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/91152.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

元矿山下的音视频应用

// 近年来,矿业的技术和管理模式随着元宇宙的火爆和自动驾驶技术的发展逐渐变化、升级,进而衍生出元矿山的概念,音视频技术也在其中成为了关键一环。LiveVideoStackCon 2023 上海站邀请了来自希迪智驾的任思亮,为大家分享希迪智…

算法通过村第三关-数组黄金笔记|数组难解

文章目录 前言数组中出现超过一半的数字数组中只出现一次的数字颜色的分类问题(荷兰国旗问题)基于冒泡排序的双指针(快慢指针)基于快排的双指针(对撞指针) 总结 前言 提示:苦不来自外在环境中的人、事、物,…

yolov8热力图可视化

安装pytorch_grad_cam pip install grad-cam自动化生成不同层的bash脚本 # 循环10次,将i的值从0到9 for i in $(seq 0 13) doecho "Running iteration $i";python yolov8_heatmap.py $i; done热力图生成python代码 import warnings warnings.filterwarn…

使用秘籍|如何实现图数据库 NebulaGraph 的高效建模、快速导入、性能优化

本文整理自 NebulaGraph PD 方扬在「NebulaGraph x KubeBlocks」meetup 上的演讲,主要包括以下内容: NebulaGraph 3.x 发展历程NebulaGraph 最佳实践 建模篇导入篇查询篇 NebulaGraph 3.x 的发展历程 NebulaGraph 自 2019 年 5 月开源发布第一个 alp…

【Spring MVC】

目录 🍮1 什么是 MVC ? 🎁2 Spring MVC 的连接 🍘2.1 RequestMapping 实现 POST 和 GET 请求 🥣2.2 GetMapping 只支持 GET 请求 🫖2.3 PostMapping 只支持 POST 请求 🍬3 Spring MVC 获取参数的…

创建本地镜像

通过前面文章的阅读,读者已经了解到所谓的容器实际上是在父镜像的基础上创建了一个可读写的文件层级,所有的修改操作都在这个文件层级上进行,而父镜像并未受影响,如果读者需要根据这种修改创建一个新的本地镜像,有两种…

Smartbi电子表格软件版本更新,首次推出Excel轻应用和语音播放

Smartbi电子表格软件又又又更新啦! 此次更新,首次推出了新特性——Excel轻应用和语音播报。另外,还对产品功能、Demo示例、配套文档进行了完善和迭代。 低代码开发Excel轻应用 可实现迅速发布web应用 业务用户的需求往往都处于“解决问题”…

APP调用bindService的跨进程调用过程

app执行bindService时会经过如下8次跨系统进程调用过程: 第1步:通过AMS.getService跨进程调用 第2步:AMS返回它的IBinder 第3步:通过AMS的IBinder调用AMS的bindService方法 第4步:而AMS存放有Server端的IBinder&…

ChatGPT在医疗系统的应用探索动态

注意:本信息仅供参考,发布该内容旨在传递更多信息的目的,并不意味着赞同其观点或证实其说法。 生成式人工智能,如OpenAI开发的ChatGPT,被认为是可以颠覆医疗行业的工具。尽管该技术刚刚起步,但已有许多医…

Vue2向Vue3过度Vuex核心概念mutations

目录 1 核心概念-mutations1.定义mutations2.格式说明3.组件中提交 mutations4.练习5.总结 2 带参数的 mutations1.目标:2.语法2.1 提供mutation函数(带参数)2.2 提交mutation 3 练习-mutations的减法功能1.步骤2.代码实现 4 练习-Vuex中的值…

kettle实现爬虫

步骤概览 获取请求 请求地址 东方财富网股票请求 自定义常量数据 获取HTTP请求之前,必须先定义一个URL常量作为HTTP client的输入 HTTP client 注:此处得到的数据并不是原生的json字符串,自己可以用文本文件输出测试以下。如下图 JavaScri…

Vue2向Vue3过度核心技术路由

目录 1 路由介绍1.思考2.路由的介绍3.总结 2 路由的基本使用1.目标2.作用3.说明4.官网5.VueRouter的使用(52)6.代码示例7.两个核心步骤8.总结 3 组件的存放目录问题1.组件分类2.存放目录3.总结 4 路由的封装抽离5 Vue路由-重定向1.问题2.解决方案3.语法4…

谈谈子网划分的定义、作用、划分方式以及案例

个人主页:insist--个人主页​​​​​​ 本文专栏:网络基础——带你走进网络世界 本专栏会持续更新网络基础知识,希望大家多多支持,让我们一起探索这个神奇而广阔的网络世界。 目录 一、子网划分的定义 二、子网掩码的作用 1、…

林业气象站——林业种植气象观测

林业气象站是一种用于观测林区气象环境的仪器,能够观测林区天气、土壤等自然环境参数(温度、湿度、风速、风向、降雨量、气压、放射线、土壤湿度等),为开展环境观测、天气预报、灾害预警、林区虫害防治起到综合指导作用。 林业气…

Unity中的数学基础——贝塞尔曲线

一:前言 一条贝塞尔曲线是由一组定义的控制点P0到 Pn,n1为线性,n2为二次......第一个和最后一个控制点称为起点和终点,中间的控制点一般不会位于曲线上 获取两个点之间的点就是通过线性插值( Mathf.Lerp&#xff09…

基于Python+djangoAI 农作物病虫害预警系统智能识别系统设计与实现(源码&教程)

1.背景 随着科技的发展,机器学习技术在各个领域中的应用越来越广泛。在农业领域,机器学习技术的应用有助于提高农作物的产量和质量,降低农业生产的成本。本文针对农作物健康识别问题,提出一种基于机器学习方法的农作健康识别系统&…

FOC之SVPWM学习笔记

一、参考资料 【自制FOC驱动器】深入浅出讲解FOC算法与SVPWM技术 - 知乎FOC入门教程_zheng是在下的博客-CSDN博客DengFOC官方文档技术干货 |【自制】FOC驱动板SVPWM_扇区判断_时间计算_哔哩哔哩_bilibili 二、FOC控制算法流程框图 在FOC控制中主要用到三个PID环,从内…

picGo+gitee+typora设置图床

picGogiteetypora设置图床 picGogitee设置图床下载picGo软件安装picGo软件gitee操作在gitee中创建仓库在gitee中配置私人令牌 配置picGo在插件设置中搜索gitee插件并进行下载 TyporapicGo设置Typora 下载Typora进行图像设置 picGogitee设置图床 当我了解picGogitee可以设置图床…

基础论文学习(2)——DETR

目标检测 DETR:End-to-End Detection with Transformer detr是facebook提出的引入transformer到目标检测领域的算法,效果很好,做法也很简单,相较于RCNN和YOLO系列算法,避免了Proposal/AnchorNMS的复杂流程。 1. detr…