(蓝桥杯C/C++)——基础算法(下)

目录

一、时空复杂度

1.时间复杂度

2.空间复杂度

3.分析技巧

4.代码示例

二、递归

1.递归的介绍

2.递归如何实现

3.递归和循环的比较

4.代码示例

三、差分

1.差分的原理和特点

2.差分的实现

3.例题讲解

四、枚举

1.枚举算法介绍

2.解空间的类型

3. 循环枚举解空间

4.例题讲解

五、前缀和

1.前缀和原理和特点

2.实现前缀和

3.代码示例

六、离散化

1.离散化简介

2.离散化的实现方法

4.代码示例


一、时空复杂度

1.时间复杂度

(1)时间复杂度是衡量算法执行时间随输入规模增长的增长率。
(2)通过分析算法中基本操作的执行次数来确定时间复杂度。
(3)常见的时间复杂度包括:常数时间 0(1)、线性时间 O(n)、对数时间 O(logn)、平方时间O(n^2)等。
(4)在计算的时候我们关注的是复杂度的数量级,并不要求严格的表达式。

一般我们关注的是最坏时间复杂度,用O(f(n))表示,大多数时候我们仅需估算即可-般来说,评测机1秒大约可以跑2e8次运算,我们要尽可能地让我们的程序运算规模级控制在1e8以内。

2.空间复杂度


(1)空间复杂度是衡量算法执行过程中所需的存储空间随输入规模增长的增长率。
(2)通过分析算法中所使用的额外存储空间的大小来确定空间复杂度。
(3)常见的空间复杂度包括:常数空间 0(1)、线性空间 0(n)、对数空间 0(logn)、平方空间0(n^2)等。

一般我们关注的是最坏空间复杂度,用O(f(n))表示,大多数时候程序占用的空间一般可以据开的数组大小精确算出,但也存在需要估算的情况。题目一般不会卡空间,一般是卡时1举个例子,假如题目限制128MB,1int~32bit~4Bytes,128MB~32*2^20int~3e7int

3.分析技巧

1.理解基本操作:基本操作可以是算术运算(加法、乘法、位运算等)、比较操作、赋值操作等。

2.关注循环结构:循环是算法中常见的结构,它的执行次数对于时间复杂度的分析至关重要

3.递归算法:递归算法的时间和空间复杂度分析相对复杂。需要确定递归的深度以及每个归调用的时间和空间开销。

4.最坏情况分析:对于时间复杂度的分析,通常考虑最坏情况下的执行时间。要考虑输入数据使得算法执行时间达到最大值的情况。

5.善用结论:某些常见算法的时间和空间复杂度已经被广泛研究和证明。可以利用这些已知结果来分析算法的复杂度。


4.代码示例

时间复杂度:O(n)该算法使用迭代的方式计算斐波那契数列的第n个数,循环遍历n次,因此时间复杂度与n成正比。

//斐波那契数列,又称黄金分割数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)

空间复杂度:O(1)算法只使用了常数级别的额外空间来存储变量,不随输入规模变化。

#include <iostream>

usinp namespace std;
int fibonacci(int n)

{
      if(n←1)
         return n;


             int prev1 = 0:
             int prev2 = 1;
             int fib = 0;

            for (int i =2;i <= n ;i++)

           {     

                   fib = prev1 =  prev2;

                   prev1 = prev2;

                    prev2 = fib;

          }
          return fib;

}
int main()

{
       int n;
       cout  <<  "Enter the position: ";
       cin >> n;

       int result = fibonacci(n);
        cout << "Fibcnacci number at position " << n << " : "<< result <<endl;

return 0;

}

二、递归

1.递归的介绍

概念:递归是指函数直接或间接调用自身的过程。

解释递归的两个关键要素:

基本情况(递归终止条件):递归函数中的一个条件,当满足该条件时,递归终止,避免无限递归。可以理解为直接解决极小规模问题的方法。
递归表达式(递归调用):递归函数中的语句,用于解决规模更小的子问题,再将子问题的答案合井成为当前问题的答案。

2.递归如何实现

递归函数的基本结构如下:
返回类型 函数名(参数列表)

  {

     //基本情况(递归终止条件)

     if(满足终止条件)

   {

         //返回终止条件下的结果

   }

         //递归表达式(递归调用)

   else

  {

         //将问题分解为规模更小的子问题

         //使用递归调用解决子问题

         // 返回子问题的结果

   }

}

实现过程:

1.将大问题分解为规模更小的子问题。

2.使用递归调用解决每个子问题。

3.通过递归终止条件来结束递归。

设计时需注意的细节:

1.确保递归一定能到递归出口,避免无限递归,这可能导致TLE(超时)、MLE(超内存)或RE(运行错误)。

2.考虑边界条件,有时候递归出口不止一个

3.避免不必要的重复计算,尽可能优化递归函数的性能(例如使用记忆化)。

3.递归和循环的比较

递归的特点:

1.直观、简洁,易于理解和实现。

2.适用于问题的规模可以通过递归调用不断减小的情况。

3.可以处理复杂的数据结构和算法,如树和图的遍历。

4.存在栈溢出风险(栈空间一般只有8MB,所以递归层数不宜过深,一般不超过1e6层)。

循环的特点:

1.直接控制流程,效率较高。

2.适用于问题的规模没有明显的缩减,或者需要特定的选代次数。

3.适合处理大部分的动态规划问题。

在部分情况下,递归和循环可以相互转化。

4.代码示例

斐波那契数列
已知F(1)=F(2)= 1;
n>3时F(n)=F(n-1)+F(n-2)
输入n,求F(n),n<=100000,结果对1e9+7取模。

#include<bits/stdc++.h>
using namespace std;
using ll =  long long;

const int N =  1e5 + 9;

const ll p= 1e9 +7;

ll fib(int n)

{
if( n <=2 )

return 1;

return (fib(n - 1) + fib(n - 2)) % p;
}
int main()

{
int n;

cin >> n;

for(int i = 1 ;i <= n; ++ i)

cout << fib(i) << '\n';

return 0;

}

三、差分

1.差分的原理和特点

对于一个数组a[ ],差分数组diff[]的定义是:
diffi]=a[i]-a[i-1]
对差分数组做前缀和可以还原为原数组:

diff[1]=a[1]

diff[2] = a[2]- a[1]

diff[3]= a[3]-a[2]

diff[n]=a[n]-a|n-1]


  diff[1]+ diff[2]+ diff[3]+...+diff[i]

= a[1] +(a[2]-a [1])+(a[3]- α[2])+...+(a[i]-a[i-1])
= a[i]

利用差分数组可以实现快速的区间修改,下面是将区间[,r]都加上x的方法:
diff[l] += x;

diff[r +1] -= x;


在修改完成后,需要做前缀和恢复为原数组,所以上面这段代码的含义是:
diff[l] += x表示将区间[l,n]都加上x,

但是[r+1,n]我们并不想加x,所以再将[r+1,n]减去x即可。

但是注意,差分数组不能实现“边修改边查询(区间和)”,只能实现“多次修改完次查询”。如果要实现“边修改边查询”需要使用树状数组、线段树等数据结构。

2.差分的实现

直接用循环O(n)实现即可,注意这里建议使得a[0]=0,下标从1开始
for(int i = 1;i <= n; ++ i)

diff[a[i]=a[i]-a[i- 1];

将区间[l,r]都加上x:
diff[l] += x;

diff[r + 1]-= x;

3.例题讲解

小明拥有 N 个彩灯,第i个彩灯的初始亮度为 ai,
小明将进行 Q 次操作,每次操作可选择一段区间,并使区间内彩灯的亮度 + x(x 可能为负数)。
求 Q 次操作后每个彩灯的亮度(若彩灯亮度为负数则输出 0)。

利用差分数组对数组a进行区间修改即可
注意输出时亮度如果为负数则输出0,需要开longlong。

#include<bits/stdc++.h>
using namespace std;
using ll =  long long;

const int N =  1e6 + 3;

ll a[N],d[N];

void solve()

{

  int n,m;

 cin >> n >>m;

  for(int i = 1;i <= n;++i)

  cin >> a[i];

for(int i = 1;i <= n;++i)

  d[i] = a[i] - a[i-1];

while(n --)

{

 intl, r, v,;

 cin >> l >>r >>v;

  d[l] +=v,d[r + 1] -= v;

}

  //前缀和还原

   for(int i = 1;i <= n;++i)

a[i] = a[i-1] + d[i];

     for(int i = 1;i <= n;++i)

cout << max(011, a[i]) << '\n'(i == n);

}

int main()

{

 solve();

 return 0;

}

   

四、枚举

1.枚举算法介绍

枚举算法是一种基本的算法思想,它通过穷举所有可能的情况来解决问题。它的基本思想是将问题的解空间中的每个可能的解都枚举出来,并进行验证和比较,找到满足问题条件的最优解或者所有解。
枚举算法适用于问题规模较小、解空间可穷举的情况。它的优点是简单直观,不需要复杂的数学推导,易于实现。但是,由于需要穷举所有可能的情况,对于问题规模较大的情况,枚举算法的时间复杂度可能会非常高,效率较低。

2.解空间的类型

一个问题的解空间是它的所有可能的解构成的集合

解空间可以是一个范围内的所有数字(或二元组、字符串等数据),或者满足某个条件的所
有数字。
当然也可以是解空间树,一般可分为子集树和排列树,针对解空间树,需要使用回溯法进行
枚举。
我们目前仅使用循环去暴力枚举解空间,具体的解空间类型需要根据题目来理解构造。

3. 循环枚举解空间

1.首先确定解空间的维度,即问题中需要枚举的变量个数。
例如当题目要求的是满足条件的数字时,我们可以循环枚举某个范围内的数字。
如果要求的是满足条件的二元组,我们可以用双重循环分别枚举第一个和第二个变量,从而构造出一个二元组。
2.对于每个变量,确定其可能的取值范围。这些范围可以根据问题的性质和约束条件来确定这一步往往是时间复杂度优化的关键。
3.在循环体内,针对每个可能解进行处理。可以进行问题的验证、计算、输出等操作。


4.例题讲解

题目描述
小明对数位中含有 2、0、1、9的数字很感兴趣(不包括前导 0),在1到 40中这样的数包括1、2、9、10至32、39 和 40,共 28 个,他们的和是 574.
请问,在1到n中,所有这样的数的和是多少?

枚举所有数字(解空间)用一个函数判断某个数字是否是特别的数,将满足条件的数字求和即可。

#include<bits/stdc++.h>
using namespace std;

bool f(int x)

{

  while(x)

    {

      int y = x % 10;

      if(y == 2 || y == 0 || y == 9)

      return  turn;

       x /= 10;

     }

}

int main()

{   

     int n;

     cin >> n;

     int ans = 0;  

         for(int i = 1;i <= n;++i)

     {

       if (f (i))

       ans += i;

      }

   cout << ans<< '\n';

   return 0;

}

五、前缀和

1.前缀和原理和特点


prefix表示前缀和,前缀和由一个用户输入的数组生成。

对于一个数组a[](下标从1开始),我们定义一个前缀和数组prefix,满足:
prefix[i] => \sum_{j-1}^{i-1} a[j]

prefix有一个重要的特性,可以用于快速生成prefix:

prefix[i] = \sum_{j-1}^{i-1} a|j]  + a[i] = prefix |i-1] + a[i]

prefix可以O(1)的求数组a几]的一段区间的和:

sum(l,r) = prefix [r] - prefix [l-1]
但是注意,prefix是一种预处理算法,只适用于a数组为静态数组的情况,即a数组中的元素在区间和查询过程中不会进行修改。
如果需要实现“先区间修改,再区间查询”可以使用差分数组,如果需要“一边修改,一边查询”需要使用树状数组或线段树等数据结构。

2.实现前缀和

利用前面讲过的特性:
prefix[i]= prefix[i - 1] + a[i]
我们的数组下标均从1开始,a[0]=0,从前往后循环计算即可。
for(int i = 1;i <= n; ++ i)

prefix[i]= prefix[i - 1] + a[i];


求区间和:
sum(L, R) = prefix[R]-prefix[L-1]

3.代码示例

问题描述
平衡串指的是一个字符串,其中包含两种不同字符,并且这两种字为的数量相
等。

例如,ababab和aababb都是平衡串,因为每种字符各有三个,而abaab和aaaab 都不是平衡串,因为它们的字符数量不相等。

小郑拿到一个只包含L、Q的字符串,他的任务就是找到最长平衡串,且满足平衡串的要求,即保证子串中L、Q的数量相等。

#include <bits/stdc++.h>

using namespace std;
const int N = 1010;
char s[N];

int prefix[N];

int main()

{

 cin >> s + 1;

  int n = strlen(s + 1);

  for(int i = 1;i <= n;++i)

 prefix[i] =  prefix[i - 1] + (s[i] == 'L' ? 1: -1);

int ans = 0;

  for(int i = 1;i <= n;++i)

     for(int j = i;j <= n;++j)

          if(prefix[j] =  prefix[i - 1] == 0)

        ans = max(ans ,j - i + 1);

cout << ans<< '\n';

return 0;

    }

}

六、离散化

1.离散化简介

把无限空间中有限的个体映射到有限的空间中去,以此提高算法的时空效率。

离散化是一种将数组的值域压缩,从而更加关注元素的大小关系的算法。当原数组中的数字很大、负数、小数时(大多数情况下是数字很大),难以将“元素值”表示为“数组下标”,一些依靠下标实现的算法和数据结构无法实现时,我们就可以考虑将其离散化。

例如原数组的范围是[1,1e9],而数组大小仅为1e5,那么说明元素值的“种类数”最多也就1e5种,从而可以利用一个数组(即离散化数组)来表示某个元素值的排名(即第几小)现值域的压缩,将原数组的元素值作为下标来处理。

离散化数组要求内部是有序(一般是去重的,当然也存在不去重的方法,但是比较少见)的,中可以直接通过离散化下标得到值,当然也可以通过值得到离散化下标(通过二分实现)。下面是一个离散化的例子:
 

a(原数组)

(离散化数组)

index(下标)

不使用

2

0

3

3

1

1000

1000

2

2

9999

3

9999

4

2

5

离散化不会单独考察,一般会结合其他算法或数据结构一起考察,例如树状数组、线段树、二维平面的计算几何等等。

2.离散化的实现方法

离散化的实现方法比较多样,但原理相同,这里采用vector来进行离散化。

#include <bits/stdc++.h>

using namespace std;
vector<int> L;//离散化数组
//返回x在L中的下标

int getidx(int x)

{
return lower_ bound( L.begin(),L.end(),x)-L.begin();

}
const int N=1e5 + 9;
int a[n];
int main()

{
int n;

cin >> n;

for(int i = 1;i <= n; ++ i)

cin >> a[i];
//将元素存入L数组中

for(int i = 1;i <= n; ++ i)

L.push back(a[i]);
//排序去重
L.erase(unique(L.begin(),L.end()),L.end());
return 0;

}

4.代码示例

#include <bits/stdc++.h>

using namespace std;
const int N = le5 + 9;
vector<int> L;
int getidx(int x)

{
return lower_bound(L.begin(),L.end(),x) - L.begin

}
int main()
int n;

cin >> n;

for(int i = 1;i <= n; ++ i)

cin >> a[i];

for(int i = 1;i <= n; ++ i)

L.push_ back(a[i]);
sort(L.begin(),L.end());

L.erase(unique(L.begin(),L.end()),L.end());
cout<<“离散化数组为:”;

for(const auto &i : L)

cout << i < ' ' ;

cout << '\n';
int val;

cin >> val;
cout << getidx(val)<< '\n';

return 0;

}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/911085.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

神经网络基础--什么是正向传播??什么是方向传播??

前言 本专栏更新神经网络的一些基础知识&#xff1b;这个是本人初学神经网络做的笔记&#xff0c;仅仅堆正向传播、方向传播就行了了一个讲解&#xff0c;更加系统的讲解&#xff0c;本人后面会更新《李沐动手学习深度学习》&#xff0c;会更有详细讲解;案例代码基于pytorch&a…

代码随想录算法训练营第三十七天 | 完全背包 518.零钱兑换 Ⅱ 377.组合总和Ⅳ 70.爬楼梯(进阶版)

完全背包&#xff1a; 文章链接 题目链接&#xff1a;卡码网 52.携带研究材料 与01背包的区别在于物品数量无限&#xff0c;因此同一种物品可以取多次。 递推式如下&#xff1a; 二维&#xff1a;dp[i][j] max(dp[i - 1][j], dp[i][j - weights[i]] value[i])&#xff0c;因…

C语言心型代码解析

方法一 心型极坐标方程 爱心代码你真的理解吗 笛卡尔的心型公式&#xff1a; for (y 1.5; y > -1.5; y - 0.1) for (x -1.5; x < 1.5; x 0.05) 代码里面用了二个for循环&#xff0c;第一个代表y轴&#xff0c;第二个代表x轴 二个增加的单位不同&#xff0c;能使得…

C语言网络编程 -- TCP/iP协议

一、Socket简介 1.1 什么是socket socket通常也称作"套接字"&#xff0c;⽤于描述IP地址和端⼝&#xff0c;是⼀个通信链的句柄&#xff0c;应⽤ 程序通常通过"套接字"向⽹络发出请求或者应答⽹络请求。⽹络通信就是两个进程 间的通信&#xff0c;这两个进…

字符串接龙 /单词接龙 (BFs C#

卡码网 110和 力扣127 和LCq 108题都是一个解法 这两道题乍一看在结果处可能不一样 力扣要求 字符串里边必须包含对应的最后一个字符 而110不需要最后一个字符 但是在实验逻辑上是一致的 只是110需要把如果在set中找不到最后一个字符就直接返回0的逻辑删去 就可以了 这就是…

Transformer和BERT的区别

Transformer和BERT的区别比较表&#xff1a; 两者的位置编码&#xff1a; 为什么要对位置进行编码&#xff1f; Attention提取特征的时候&#xff0c;可以获取全局每个词对之间的关系&#xff0c;但是并没有显式保留时序信息&#xff0c;或者说位置信息。就算打乱序列中token…

python操作MySQL以及SQL综合案例

1.基础使用 学习目标&#xff1a;掌握python执行SQL语句操作MySQL数据库软件 打开cmd下载安装 安装成功 connection就是一个类&#xff0c;conn类对象。 因为位置不知道&#xff0c;所以使用关键字传参。 表明我们可以正常连接到MySQL 演示、执行非查询性质的SQL语句 pytho…

【报告PDF附下载】2024人工智能大模型技术财务应用蓝皮书

《人工智能大模型技术财务应用蓝皮书》 是一本探讨AI大模型技术在财务管理领域应用的权威指南。书中不仅概述了人工智能大模型技术的发展历程、典型特征和未来趋势&#xff0c;还详细介绍了它的体系架构和在财务领域的应用情况。 书中通过家用电器制造、银行、汽车企业、基础设…

快速上手vue3+js+Node.js

安装Navicat Premium Navicat Premium 创建一个空的文件夹&#xff08;用于配置node&#xff09; 生成pakeage.json文件 npm init -y 操作mysql npm i mysql2.18.1 安装express搭建web服务器 npm i express4.17.1安装cors解决跨域问题 npm i cors2.8.5创建app.js con…

【Python爬虫实战】DrissionPage 与 ChromiumPage:高效网页自动化与数据抓取的双利器

&#x1f308;个人主页&#xff1a;易辰君-CSDN博客 &#x1f525; 系列专栏&#xff1a;https://blog.csdn.net/2401_86688088/category_12797772.html ​ 目录 前言 一、DrissionPage简介 &#xff08;一&#xff09;特点 &#xff08;二&#xff09;安装 &#xff08;三…

【JAVA】java 企业微信信息推送

前言 JAVA中 将信息 推送到企业微信 // 企微消息推送messageprivate String getMessage(String name, String problemType, String pushResults, Long orderId,java.util.Date submitTime, java.util.Date payTime) {String message "对接方&#xff1a;<font color\…

前端md5加密

npm下载 npm install --save ts-md5页面引入 import { Md5 } from ts-md5使用 const md5PwdMd5.hashStr("123456")md5Pwd&#xff08;加密后的数据&#xff09; .toUpperCase()方法转大写

DDRSYS,不同频点的时序参数配置说明,DBI/DM功能说明

文章目录 不同频点的时序参数配置说明LPDDR4 时序参数DFI 参数对应配置DDR3/4DBI功能说明&#xff0c;MC控制DBI情况 不同频点的时序参数配置说明 LPDDR4 时序参数 LP4的时序参数从JEDEC颗粒文档可以检索到读写的时序参数如下&#xff1a; 此图主要关注不同频点对应的RL和WL…

如何自学机器学习?

自学机器学习可以按照以下步骤进行&#xff1a; 一、基础知识准备 数学基础&#xff1a; 高等数学&#xff1a;学习微积分&#xff08;包括导数、微分、积分等&#xff09;、极限、级数等基本概念。这些知识是后续学习算法和优化方法的基础。 线性代数&#xff1a;掌握矩阵…

工程巡查应该怎么做?如何利用巡查管理软件?

工程行业&#xff0c;无论是建设单位&#xff0c;监理单位&#xff0c;还是施工单位&#xff0c;工程巡查几乎是每日必做的工作。然而&#xff0c;巡查过程中&#xff0c;传统的做法通常依赖手动记录、拍照上传、在微信群中进行汇报。这种方式需要建大量的微信群&#xff0c;不…

Scala入门基础(16)scala的包

Scala的包定义包定义包对象Scala的包的导入导入重命名 一.Scala的包 package&#xff08;包&#xff1a;一个容器。可以把类&#xff0c;对象&#xff0c;包&#xff0c;装入。 好处&#xff1a; 区分同名的类&#xff1b;类很多时&#xff0c;更好地管理类&#xff1b;控制…

协程6 --- HOOK

文章目录 HOOK 概述链接运行时动态链接 linux上的常见HOOK方式修改函数指针用户态动态库拦截getpidmalloc 第一版malloc 第二版malloc/free通过指针获取到空间大小malloc 第三版strncmp 内核态系统调用拦截堆栈式文件系统 协程的HOOK HOOK 概述 原理&#xff1a;修改符号指向 …

MySQL中,GROUP BY 分组函数

文章目录 示例查询&#xff1a;按性别分组统计每组信息示例查询&#xff1a;按性别分组显示详细信息示例查询&#xff1a;按性别分组并计算平均年龄,如果你还想统计每个性别的平均年龄&#xff0c;可以结合AVG()函数&#xff1a;说明 示例查询&#xff1a;按性别分组统计每组信…

免费数据集网站

1、DataSearch https://datasetsearch.research.google.comhttp://DataSearch 2、FindData findata-科学数据搜索引擎https://www.findata.cn/ 3、Kaggle Kaggle: Your Machine Learning and Data Science CommunityKaggle is the world’s largest data science community …

十二:java web(4)-- Spring核心基础

目录 创建项目 Spring 核心基础 Spring 容器 Spring 容器的作用 Spring 容器的工作流程 Bean Bean 的生命周期 IOC&#xff08;控制反转&#xff09;与依赖注入&#xff08;DI&#xff09; 控制反转的概念 依赖注入的几种方式&#xff08;构造器注入、Setter 注入、接…