Google DeepMind的研究人员提出了Talker-Reasoner框架

  每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/

AI智能体在应对各种任务时,常需要不同的速度、推理和规划能力。理想情况下,智能体应能区分何时使用直觉记忆,何时利用更复杂的推理能力。然而,设计能根据任务需求正确执行的智能系统仍是一项挑战。

论文下载地址:Agents Thinking Fast and Slow: A Talker-Reasoner Architecture

2410.08328v1icon-default.png?t=O83Ahttps://rengongzhineng.io/wp-content/uploads/2024/10/2410.08328v1.pdfDownload

在一项最新论文中,Google DeepMind的研究人员提出了Talker-Reasoner框架,这是一个受人类“双系统”思维模型启发的智能体架构。该框架旨在为AI智能体找到不同推理方式之间的最佳平衡,以实现更顺畅的用户体验。

人类与AI的系统1和系统2思维

诺贝尔奖得主丹尼尔·卡尼曼的“双系统”理论表明,人类的思维由两个不同的系统驱动。系统1是快速、直觉且自动的,负责我们的快速判断,例如应对突发事件或识别熟悉的模式。系统2则缓慢、深思熟虑且分析性强,负责复杂问题的解决、规划和推理。

这两个系统并非完全独立,而是相互影响。系统1生成直觉和初步判断,系统2对这些判断进行评估,并在认可后将其整合为明确的信念和选择。这种互动使人类能够灵活地应对从日常生活到复杂问题的多种情境。

目前,大多数AI智能体主要依赖系统1模式,擅长模式识别、快速反应和重复性任务。然而,在需要多步骤规划、复杂推理和战略性决策的场景中,AI往往难以胜任,这正是系统2思维的强项。

Talker-Reasoner框架

DeepMind提出的Talker-Reasoner框架赋予AI智能体系统1和系统2的能力。它将智能体分为“Talker”(对话者)和“Reasoner”(推理者)两个模块。

  • Talker:相当于系统1,负责实时的用户互动和环境感知。它负责观测、语言理解、信息检索以及生成对话回应,通常利用大语言模型的上下文学习功能(ICL)来执行这些任务。
  • Reasoner:代表系统2的慢速推理组件,负责复杂推理和规划。它专门处理特定任务,利用外部数据源来丰富知识并作出明智决策,同时通过更新智能体的信念来指导未来决策。这些信念将作为Talker在对话中的记忆来源。

研究人员写道:“Talker专注于生成自然且连贯的对话,而Reasoner专注于多步骤规划和基于环境信息进行推理。”

这两个模块通过共享记忆系统进行交互。Reasoner更新其信念和推理结果,Talker则从中检索信息以指导互动。这种异步通信方式允许Talker维持对话的连续性,即使Reasoner在后台进行较长时间的计算。

研究人员解释道:“这类似于行为科学中的双系统方法,系统1始终在线,而系统2只在需要时启动。Talker始终保持环境互动,Reasoner则仅在Talker需要时或通过记忆读取信念更新。”

Talker-Reasoner框架应用于AI辅导

研究人员在睡眠辅导应用中测试了Talker-Reasoner框架。该AI教练通过自然语言与用户互动,提供个性化的睡眠改善指导。这种应用需要快速、情感共鸣的对话和基于知识的深思熟虑的推理。

在此应用中,Talker组件负责对话,提供情感支持并引导用户完成辅导过程的不同阶段。Reasoner则维护用户的睡眠问题、目标、习惯和环境的信念状态,并基于这些信息生成个性化建议和多步骤计划。这一框架同样适用于客户服务和个性化教育等其他应用场景。

未来研究方向

DeepMind研究人员指出,未来研究的一项重点是优化Talker与Reasoner的交互。理想情况下,Talker应能自动判断何时需要Reasoner的介入,以减少不必要的计算,提高整体效率。

另一方向是扩展框架,使其整合多个Reasoner,每个Reasoner专注于不同类型的推理或知识领域。这样可以使智能体更好地应对复杂任务,提供更全面的支持。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/902604.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【复旦微FM33 MCU 外设开发指南】外设篇1——硬件除法器

前言 本系列基于复旦微FM33LC0系列单片机的DataSheet编写,旨在提供一些开发指南。 本文章及本系列其他文章将持续更新,本系列其它文章请跳转【复旦微FM33 MCU 外设开发指南】总集篇 本文章最后更新日期:2024/10/24 文章目录 前言用途工作流…

若依 spring boot +vue3 前后端分离

若依方便之处 如果你需要一个前后端分离管理web系统,可以通过若依快速搭建一个基于spring boot vue的管理系统,当然还有cloud版,和App移动版可供选择,本文搭建的是spring boot vue3.x版本 若依官网 https://www.ruoyi.vip/ 环境…

贪心算法day(1)

1.将数组和减半的最少操作次数 链接:. - 力扣(LeetCode) 思路:创建大跟堆将最大的数进行减半 注意点:double t queue.poll()会将queue队列数字减少一个后再除以2,queue.offer(queue.poll()/…

第十三部分 Java IO

第十三部分 Java IO 13.1 IO概述 13.1.1 什么是IO 生活中,你肯定经历过这样的场景。当你编辑一个文本文件,忘记了ctrls ,可能文件就白白编辑了。当你电脑上插入一个U盘,可以把一个视频,拷贝到你的电脑硬盘里。那么数…

EfficientNet-B6模型实现ISIC皮肤镜图像数据集分类

项目源码获取方式见文章末尾! 回复暗号:13,免费获取600多个深度学习项目资料,快来加入社群一起学习吧。 《------往期经典推荐------》 项目名称 1.【基于opencv答题卡识别判卷】 2.【卫星图像道路检测DeepLabV3Plus模型】 3.【G…

51单片机完全学习——红外遥控

一、红外接收模块原理 红外接收头内部本身有一个反相,意思就是:平时发送方无信号时接收到的是1,发送方有发送载波时接收头引脚输出的是0,写代码的时候注意这一点。红外协议,你也可以理解成,他对0和1重新做…

Vue学习笔记(五)

Class绑定 数据绑定的一个常见需求场景式操纵元素的CSS class列表,因为class是attribute,我们可以和其他attribute一样使用v-bind将它们和动态的字符串绑定。但是,在处理比较复杂的绑定时,通过拼接生成字符串是麻烦且易出错的。因此&#xf…

【认知智能】编译器1

深度学习编译器是一种专门设计用来优化和加速深度学习模型在各种硬件平台上执行的工具。它们通过将高级深度学习框架(如TensorFlow, PyTorch等)中的计算图转换为针对特定硬件架构优化过的低级代码来实现这一目标。基础架构通常包括以下几个关键组件&…

C语言基础题(大合集2)

1. 时间转换 给定秒数 --> 输出秒数 转化成 时/分/秒 //时间转换 //给定秒数 --> 转换成 小时/分/秒 int main() {//输入int seconds 0;int h 0;//小时int m 0;//分钟int s 0;//秒scanf("%d", &seconds);//计算h seconds / 60 / 60;m seconds / 60…

ctfshow(171,172,173)--SQL注入--联合注入

Web171 进入靶场,是一个SQL查询界面: 审计: 查询语句如下: $sql "select username,password from user where username !flag and id ".$_GET[id]." limit 1;";语句功能从数据表user中查询username,pa…

Continue语句应用举例

在main.cpp里输入程序如下 #include <iostream> //使能cin(),cout(); #include <iomanip> //使能setbase(),setfill(),setw(), //setprecision(),setiosflags()和resetiosflags(); using namespace std; //告诉编译器使用std标准程序库; int main() { i…

【AIGC】从CoT到BoT:AGI推理能力提升24%的技术变革如何驱动ChatGPT未来发展

博客主页&#xff1a; [小ᶻZ࿆] 本文专栏: AIGC | ChatGPT 文章目录 &#x1f4af;前言&#x1f4af;迈向AGI的新跨越&#x1f4af;BoT与CoT的技术对比技术原理差异推理性能提升应用范围和通用性从错误中学习的能力总结 &#x1f4af;BoT的工作流程和机制初始化过程生成推…

在微信里怎么创建秒杀活动

在这个快节奏的时代&#xff0c;每个人都渴望以最优惠的价格购买到心仪的商品。为了满足广大消费者的这一需求&#xff0c;我们特别在微信平台推出了限时秒杀活动&#xff0c;让你在指尖轻松享受购物的乐趣与实惠。 工具/原料 微信小程序 飞多多网站 方法/步骤 一、秒杀活动…

计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-25

计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-25 0. 前言 大语言模型在很多领域都有成功的应用&#xff0c;在本期计算机前沿技术进展研究介绍中&#xff0c;我们将带来一篇用大语言模型进行诺贝尔文学作品分析的论文。虽然有一定趁最近诺贝尔奖热潮的意味&…

本地docker部署中间件和应用

Docker Desktop搭建 安装完成之后使用docker下载镜像&#xff0c;报以下错误&#xff1a; 解决办法&#xff1a; Docker Engine配置能访问的镜像地址&#xff1a; {"builder": {"gc": {"defaultKeepStorage": "20GB","enabled…

【Keil5教程及技巧】耗时一周精心整理万字全网最全Keil5(MDK-ARM)功能详细介绍【建议收藏-细细品尝】

&#x1f48c; 所属专栏&#xff1a;【单片机开发软件技巧】 &#x1f600; 作  者&#xff1a; 于晓超 &#x1f680; 个人简介&#xff1a;嵌入式工程师&#xff0c;专注嵌入式领域基础和实战分享 &#xff0c;欢迎咨询&#xff01; &#x1f496; 欢迎大家&#xff1…

ARM学习(34) GDB 调试器详细了解

笔者来聊一下对于GDB的一些操作使用认识。 1、GDB的使用以及用途 GDB是GNU的一个项目&#xff0c;具体网站如下&#xff0c;网址&#xff1a;https://www.gnu.org/software/gdb/ 支持多种语言&#xff0c;常用的就是C/C/Python等等跨平台使用&#xff0c;Linux/windows/MacOS…

电机---3直流有刷减速电机

前言 在简单了解电机分类后&#xff0c;为了能够更深入学习了解电机、编码器、PID算法等内容&#xff0c;选择使用野火的直流减速有刷电机和其驱动板进行学习&#xff0c;单片机开发板选择野火的指南者开发板。 1直流有刷减速电机 直流有刷电机转速快&#xff0c;扭矩小&…

SQL Server 当前日期及其未来三天的日期

当前日期及其未来三天的日期&#xff0c;并分别以 YYYY-MM-DD 和 yyyyMMdd 的格式展示 1、当前日期及其未来三天的日期&#xff0c;以 YYYY-MM-DD的格式展示 WITH CurrentDate AS (SELECT GETDATE() AS 当前日期 ) -- 使用 CONVERT 函数 SELECTCONVERT(VARCHAR(10), 当前日期,…

【Android】ViewPager与ViewPager2之间的区别

ViewPager 和 ViewPager2 都是 Android 中用于实现滑动页面切换的控件&#xff0c;但 ViewPager2 是对 ViewPager 的改进和增强版本。 区别 实现方式 ViewPager 继承自 ViewGroup&#xff0c;内部并未使用已有的成熟控件&#xff0c;更多的是自定义的操作。ViewPager2 也继承…