提示工程(Prompt Engineering)指南(进阶篇)

在 Prompt Engineering 的进阶阶段,我们着重关注提示的结构化、复杂任务的分解、反馈循环以及模型的高级特性利用。随着生成式 AI 技术的快速发展,Prompt Engineering 已经从基础的单一指令优化转向了更具系统性的设计思维,并应用于多轮对话、特定领域任务和复杂文本生成等场景中。

在这里插入图片描述

高阶 Prompt Engineering 核心概念

  1. 多层次任务分解

    对于复杂任务,可以将它分解为多个可操作的子任务,逐步引导模型生成目标内容。这种分解技术通常用于长文本生成或复杂的代码生成。

  2. 递归式提示设计(Recursive Prompting)

    使用分步提示或反馈循环的方式,在一轮生成中得到初步结果后,通过进一步指令细化输出。例如,先生成内容的大纲,再根据每个小节引导模型补充细节。

  3. 系统性 Prompt 模型

    结合 Prompt 模板和动态变量,以更大规模或系统化的方式生成内容。例如,通过变量替换实现不同领域的内容生成。

  4. 精细调节模型行为

    通过角色设定、情感调节、语言风格调整等方法,使模型表现出特定的语气或行为风格,如教授、顾问或销售员等。特别适用于聊天机器人和虚拟助手的场景中。

  5. 连续对话中的上下文控制

    在连续对话中,有选择地保留上下文信息,以确保模型理解当前状态并减少误解。有效的上下文管理对多轮对话的连贯性至关重要,尤其在处理多主题交错的长对话时。

  6. 反向工程模型行为(Reverse Prompt Engineering)

    通过观察模型在不同 Prompt 下的输出反应,逆向推导出模型偏好的提示语结构。这是一种试错式的方法,可以帮助理解如何设计提示,以获得最优结果。

高阶 Prompt Engineering 技巧

技巧 1:多步逐层细化(Stepwise Refinement)

场景:复杂内容的逐步生成,如写作或长代码片段。

应用示例

Prompt 1: “生成一篇关于量子计算的文章提纲,包括5个主要部分。”
Prompt 2: “根据以下提纲,逐步生成每个部分的详细描述。” 

目的:确保复杂内容的结构性和逻辑性,使模型生成更具条理的长文或代码。

技巧 2:动态模板和变量替换

场景:大规模文本生成或批量内容生产。

应用示例

Prompt Template: “写一篇关于[主题]的介绍,包括[优势]和[挑战]。”
动态填充的主题:如“区块链”、“人工智能”等。

目的:通过动态填充变量的方式在模板中生成不同主题的内容,适合批量内容生成。

技巧 3:利用约束生成特定风格输出

场景:生成符合特定语调或格式的文本,如写作风格、情绪表达等。

应用示例

Prompt: “用积极的语言描述创业的挑战,并给出鼓励的建议。”

目的:通过情绪或风格约束使模型输出符合指定的语气或情绪,特别适合品牌内容生成或心理支持类文本。

技巧 4:多轮对话的上下文筛选与重用

场景:在多轮对话中筛选有效的上下文以确保输出连贯。

应用示例

Prompt 1: “先回答用户的问题,再提出建议。”
Prompt 2: “根据上一轮的回答,详细解释建议的实施步骤。”

目的:有效管理对话上下文,确保每轮生成的内容都基于清晰的上下文关系。

在这里插入图片描述

高阶 Prompt 模式

  1. 问答链(Q&A Chaining) 用于回答复杂问题时,将其分解为多个连续问题,引导模型逐步生成答案。
  • 示例:首先获取背景信息,再针对每个部分深入探讨,适用于技术文档或多层次问答生成。
  1. 意图转化模式(Intent Transformation) 将用户模糊的请求转化为更明确的需求,逐步引导模型提炼需求并生成详细内容。
  • 示例:当用户给出广泛主题时,逐步明确主题各细节,使生成内容更符合预期。
  1. **反向示例模式(Negative Prompting)**指定模型避免某些内容或格式,有助于减少模型生成不相关或不恰当内容的概率。
  • 示例:在敏感话题或专业内容中,提示模型“避免使用某类词汇”或“不要生成负面表述”。

应用案例

案例 1:内容创作中的高阶 Prompt

任务:生成一篇详细的市场报告,分析人工智能的应用领域、市场规模和发展趋势。

Prompt:
1. “请生成人工智能领域的市场报告提纲,包含应用领域、市场规模、发展趋势三部分。”
2. “根据提纲,详细描述每一部分的主要内容,重点突出市场规模数据和未来预测。”

效果:多步分解任务使报告生成条理分明,减少了模型在处理复杂内容时出错的概率。

案例 2:聊天机器人中的个性化对话

任务:设计一个心理咨询机器人的回应,帮助用户在压力中找到支持。

Prompt:
1. “以关怀的语气回应用户的压力,并提供一些安慰。”
2. “帮助用户思考他们的应对方式,建议使用深呼吸等简单技巧。”

效果:通过语气和回应风格的调整,让生成的内容更具人性化和情感支持效果。

未来趋势

随着模型性能和参数规模的提升,Prompt Engineering 的发展趋势将侧重于更复杂的对话管理、实时反馈循环,以及适应不同领域需求的个性化 Prompt 模板。预计未来将出现针对不同领域的 Prompt 编写工具和自动化提示生成系统,使 Prompt Engineering 更加便捷和高效。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/901753.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

在GeoTools中的Shapefile属性表读取效率之Shp与Dbf对比

目录 前言 一、POI测试数据简介 1、选用的POI数据 2、关于数据的属性数据 二、属性数据读取的两种方式实现 1、基于DbaseFileReader的读取 2、基于SimpleFeatureSource的读取 三、实际运行对比 1、内存和CPU占用情况 2、运行耗时情况 四、总结 前言 众所周知&#x…

创建型模式-----建造者模式

目录 背景: 构建模式UML 代码示例 房子成品: 构建器抽象: 具体构建器: 建筑师: 测试部…

从蚂蚁金服面试题窥探STW机制

背景 在Java虚拟机(JVM)中,垃圾回收(GC)是一个至关重要的机制,它负责自动管理内存的分配和释放。然而,垃圾回收过程并非没有代价,其中最为显著的一个影响就是STW(Stop-T…

跟着鸟儿学飞行?扑翼机器人的感知秘籍

大家好!今天来了解一篇扑翼机器人的研究——《Avian-inspired embodied perception in biohybrid flapping-wing robotics》发表于《Nature Communications》。在广阔天空中,鸟类凭借精妙翅膀结构与敏锐感知自由翱翔,这一直吸引着科学家探索其…

从数据中台到数据飞轮:实现数据驱动的升级之路

从数据中台到数据飞轮:实现数据驱动的升级之路 随着数字化转型的推进,数据已经成为企业最重要的资产之一,企业普遍搭建了数据中台,用于整合、管理和共享数据;然而,近年来,数据中台的风潮逐渐减退…

django(3)jinja2模版的使用

启动模版 安装jinja2 pip install jinja2 配置setting TEMPLATES中添加配置 {BACKEND: django.template.backends.jinja2.Jinja2,DIRS: [os.path.join(BASE_DIR,jinja2)], #模版在项目中的所在位置} template中各项的含义 这个配置项中模版自上而下加载,重名…

工具学习_Cobalt Strike

1. Cobalt Strike 概述 Cobalt Strike 是一款基于 java 的渗透测试神器,常被业界人称为 CS 神器。自 3.0 以后已经不在使用 Metasploit 框架而作为一个独立的平台使用,分为客户端与服务端,服务端是一个,客户端可以有多个&#xf…

表格编辑demo

<el-form :model"form" :rules"status ? rules : {}" ref"form" class"form-container" :inline"true"><el-table :data"tableData"><el-table-column label"计算公式"><templat…

API 接口管理 架构 api接口设计

提供给第三方的业务接口应该如何设计呢&#xff1f;需要从哪些方面考虑&#xff1f;以及如何实现这些方面&#xff1f; 1、标准化 RESTful 2、安全性 1&#xff09;请求token&#xff08;防止接口被第三方调用&#xff09; token作为调用系统的凭证。token可以设置一次有效&…

UML 总结(基于《标准建模语言UML教程》)

定义 UML 又称为统一建模语言或标准建模语言&#xff0c;是一种标准的图形化建模语言&#xff0c;它是面向对象分析与设计的一种标准表示。尽管UML 本身没有对过程有任何定义&#xff0c;但UML 对任何使用它的方法&#xff08;或过程&#xff09;提出的要求是&#xff1a;支持用…

Linux初阶——信号

一、预备 1、信号的处理方式 1.1. 默认动作 当收到一个信号时&#xff0c;就执行这个信号的默认动作。 1.2. 忽略 当收到一个信号时&#xff0c;就忽略执行这个信号的默认动作。 1.3. 自定义动作 当收到一个信号时&#xff0c;就执行信号的自定义动作。 2、硬件中断 你…

IT监控对接华三CAS云管平台监控方案

概述 CAS云管平台是新华三集团自主研发的虚拟化和云计算管理平台&#xff0c;它主要面向数据中心&#xff0c;提供虚拟化和云计算管理&#xff0c;在教育行业、网络安全领域、高性能计算业务、企业IT部门等领域被广泛应用。在信创国产化背景下&#xff0c;以CAS、Fusion等为代…

Ajax:表单 模板引擎

Ajax&#xff1a;表单 & 模板引擎 form 表单form 属性 Ajax操控表单事件监听阻止默认行为收集表单数据 模板引擎art-template{{}}语法原文输出条件输出循环输出过滤器 原理 form 表单 在HTML中&#xff0c;可以通过<form>创建一个表单&#xff0c;收集用户信息。而采…

基于centos7.9搭建在线购物网站

mall 搭建数据库配置Java配置jar包 一款模仿天猫的在线购物网站&#xff0c;基于centos7.9搭建 搭建数据库 官网下载软件包后上传 基于centos7.9搭建mysql5.6.42 [rootmysql02 ~]# ls anaconda-ks.cfg init.sh MySQL-5.6.42-1.el7.x86_64.rpm-bundle.tar解压 tar -xf My…

Python 自动化运维:Python基础知识

Python 自动化运维&#xff1a;Python基础知识 目录 &#x1f4ca; Python 基础复习 数据类型、控制结构与常用函数面向对象编程&#xff08;OOP&#xff09;与类的使用函数式编程概念与 lambda 表达式异常处理与日志记录的基本实践 1. &#x1f4ca; Python 基础复习 数据…

【论文阅读】Tabbed Out: Subverting the Android Custom Tab Security Model

论文链接&#xff1a;Tabbed Out: Subverting the Android Custom Tab Security Model | IEEE Conference Publication | IEEE Xplore 总览 “Tabbed Out: Subverting the Android Custom Tab Security Model” 由 Philipp Beer 等人撰写&#xff0c;发表于 2024 年 IEEE Symp…

word技巧:如何禁止复制word文件内容?

在文档管理与协作的复杂环境中&#xff0c;确保文档内容的完整性和安全性至关重要。Microsoft Word作为一款广泛使用的文字处理软件&#xff0c;提供了强大的限制编辑功能&#xff0c;允许用户控制对文档内容的修改权限&#xff0c;有效防止未经授权的更改。本文将深入解析Word…

LabVIEW如何学习数据结构和算法

作为LabVIEW程序员&#xff0c;在学习数据结构和算法时&#xff0c;由于LabVIEW以图形编程为主&#xff0c;与传统编程语言的学习方式有些不同。因此&#xff0c;理解算法思想并将其在LabVIEW中实现是关键。 ​ 1. 夯实编程基础概念 LabVIEW与文本编程语言在实现逻辑上的方式…

Maven项目报错:invalid LOC header (bad signature)

文章目录 Maven项目报错&#xff1a;invalid LOC header (bad signature)1. Maven项目加载或Pom.Xml刷新后仍出现如下错误2. 解决方法 Maven项目报错&#xff1a;invalid LOC header (bad signature) 1. Maven项目加载或Pom.Xml刷新后仍出现如下错误 错误提示&#xff1a; in…

方形件排样优化与订单组批问题探析

方形件排样优化与订单组批问题是计算复杂度很高的组合优化问题&#xff0c;在工业工程中有很广泛的应用背景。为实现个性化定制生产模式&#xff0c;企业会选择订单组批的方式&#xff0c;继而通过排样优化实现批量切割&#xff0c;加工完成后再按照不同客户需求进行分拣&#…