近似线性可分支持向量机的原理推导

近似线性可分的意思是训练集中大部分实例点是线性可分的,只是一些特殊实例点的存在使得这种数据集不适用于直接使用线性可分支持向量机进行处理,但也没有到完全线性不可分的程度。所以近似线性可分支持向量机问题的关键就在于这些少数的特殊点。

相较于线性可分情况下直接的硬间隔最大化策略,近似线性可分问题需要采取一种称为“软间隔最大化”的策略来处理。少数特殊点不满足函数间隔大于1的约束条件,近似线性可分支持向量机的解决方案是对每个这样的特殊实例点引入一个松弛变量 ξ i ⩾ 0 \xi_i \geqslant 0 ξi0 ,使得函数间隔加上松弛变量后大于等于1,约束条件就变为:
y i ( w ⋅ x i + b ) + ξ i ⩾ 1 (9-37) y_i(w \cdot x_i + b) + \xi_i \geqslant 1 \tag{9-37} yi(wxi+b)+ξi1(9-37)

对应的目标函数也变为:
1 2 ∣ ∣ w ∣ ∣ 2 + C ∑ i = 1 N ξ i (9-38) \frac{1}{2} ||w||^2 + C \sum_{i=1}^{N} \xi_i \tag{9-38} 21∣∣w2+Ci=1Nξi(9-38)

其中 C C C 为惩罚系数,表示对误分类点的惩罚力度。

跟线性可分支持向量机一样,近似线性可分支持向量机可形式化为一个凸二次规划问题:
min ⁡ w , b , ξ 1 2 ∥ w ∥ 2 + C ∑ i = 1 N ξ i  s.t.  y i ( w ⋅ x i + b ) ≥ 1 − ξ i , i = 1 , 2 , ⋯   , N ξ i ≥ 0 , i = 1 , 2 , ⋯   , N (9-39) \begin{aligned} & \min_{w,b,\xi} \quad \frac{1}{2} \| w \|^2 + C \sum_{i=1}^{N} \xi_i \\ & \text { s.t. } \quad y_i (w \cdot x_i + b) \geq 1 - \xi_i, \quad i = 1, 2, \cdots, N \\ & \quad \xi_i \geq 0, \quad i = 1, 2, \cdots, N \tag{9-39} \end{aligned} w,b,ξmin21w2+Ci=1Nξi s.t. yi(wxi+b)1ξi,i=1,2,,Nξi0,i=1,2,,N(9-39)

类似于 9.2.1 节的线性可分离支持向量机的凸二次规划问题,我们同样将其转化为对偶问题进行求解。式(9-39)的对偶问题为:
min ⁡ α 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i ⋅ x j ) − ∑ i = 1 N α i  s.t.  ∑ i = 1 N α i y i = 0 0 ≤ α i ≤ C , i = 1 , 2 , ⋯   , N (9-40) \begin{aligned} & \min_{\alpha} \quad \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j (x_i \cdot x_j) - \sum_{i=1}^{N} \alpha_i \\ & \text { s.t. } \quad \sum_{i=1}^{N} \alpha_i y_i = 0 \\ & \quad 0 \leq \alpha_i \leq C, \quad i = 1, 2, \cdots, N \tag{9-40} \end{aligned} αmin21i=1Nj=1Nαiαjyiyj(xixj)i=1Nαi s.t. i=1Nαiyi=00αiC,i=1,2,,N(9-40)

式(9-39)的拉格朗日函数为:
L ( w , b , ξ , α , μ ) = 1 2 ∥ w ∥ 2 + C ∑ i = 1 N ξ i − ∑ i = 1 N α i ( y i ( w ⋅ x i + b ) − 1 + ξ i ) − ∑ i = 1 N μ i ξ i (9-41) L(w, b, \xi, \alpha, \mu) = \frac{1}{2} \| w \|^2 + C \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \alpha_i (y_i (w \cdot x_i + b) - 1 + \xi_i) - \sum_{i=1}^{N} \mu_i \xi_i \tag{9-41} L(w,b,ξ,α,μ)=21w2+Ci=1Nξii=1Nαi(yi(wxi+b)1+ξi)i=1Nμiξi(9-41)

原始问题为极小极大化问题,则对偶问题为极大极小化问题。同样先对 L ( w , b , ξ , α , μ ) L(w, b, \xi, \alpha, \mu) L(w,b,ξ,α,μ) w , b , ξ w, b, \xi w,b,ξ 的极小,再对其求 α \alpha α 的极大。首先求 L ( w , b , ξ , α , μ ) L(w, b, \xi, \alpha, \mu) L(w,b,ξ,α,μ) 关于 w , b , ξ w, b, \xi w,b,ξ 的偏导,如下:
∂ L ∂ w = w − ∑ i = 1 N α i y i x i = 0 (9-42) \frac{\partial L}{\partial w} = w - \sum_{i=1}^{N} \alpha_i y_i x_i = 0 \tag{9-42} wL=wi=1Nαiyixi=0(9-42)

∂ L ∂ b = − ∑ i = 1 N α i y i = 0 (9-43) \frac{\partial L}{\partial b} = - \sum_{i=1}^{N} \alpha_i y_i = 0 \tag{9-43} bL=i=1Nαiyi=0(9-43)

∂ L ∂ ξ i = C − α i − μ i = 0 (9-44) \frac{\partial L}{\partial \xi_i} = C - \alpha_i - \mu_i = 0 \tag{9-44} ξiL=Cαiμi=0(9-44)

可解得:
w = ∑ i = 1 N α i y i x i (9-45) w = \sum_{i=1}^{N} \alpha_i y_i x_i \tag{9-45} w=i=1Nαiyixi(9-45)

∑ i = 1 N α i y i = 0 (9-46) \sum_{i=1}^{N} \alpha_i y_i = 0 \tag{9-46} i=1Nαiyi=0(9-46)

C − α i − μ i = 0 (9-47) C - \alpha_i - \mu_i = 0 \tag{9-47} Cαiμi=0(9-47)

将式(9-45)~式(9-47)代入式(9-41),有:

min ⁡ w , b , ξ L ( w , b , ξ , α , μ ) = − 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i ⋅ x j ) + ∑ i = 1 N α i (9-48) \min_{w,b,\xi} \quad L(w, b, \xi, \alpha, \mu) = - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j (x_i \cdot x_j) + \sum_{i=1}^{N} \alpha_i \tag{9-48} w,b,ξminL(w,b,ξ,α,μ)=21i=1Nj=1Nαiαjyiyj(xixj)+i=1Nαi(9-48)

然后对 min ⁡ w , b , ξ \min_{w,b,\xi} minw,b,ξ L ( w , b , ξ , α , μ ) L(w,b,\xi,\alpha,\mu) L(w,b,ξ,α,μ) α \alpha α 的极大,可得对偶问题为:

max ⁡ α L ( w , b , ξ , α , μ ) = − 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i ⋅ x j ) + ∑ i = 1 N α i s . t . ∑ i = 1 N α i y i = 0 C − α i − μ i = 0 α i ≥ 0 μ i ≥ 0 , i = 1 , 2 , … , N (9-49) \begin{aligned} & \max_\alpha L(w,b,\xi,\alpha,\mu) = -\frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j (x_i \cdot x_j) + \sum_{i=1}^N \alpha_i \\ & s.t. \quad \sum_{i=1}^N \alpha_i y_i = 0 \\ & \quad C - \alpha_i - \mu_i = 0 \\ & \quad \alpha_i \geq 0 \\ & \quad \mu_i \geq 0, \quad i = 1, 2, \dots, N \tag{9-49} \end{aligned} αmaxL(w,b,ξ,α,μ)=21i=1Nj=1Nαiαjyiyj(xixj)+i=1Nαis.t.i=1Nαiyi=0Cαiμi=0αi0μi0,i=1,2,,N(9-49)

将式(9-49)的第2~4个约束条件式进行变换,消除变量 μ i \mu_i μi 后可简化约束条件为:
0 ≤ α i ≤ C (9-50) 0 \leq \alpha_i \leq C \tag{9-50} 0αiC(9-50)

联合式(9-48)和式(9-49),并将极大化问题转化为极小化问题,即式(9-40)的对偶问题。跟线性可分支持向量机求解方法一样,近似线性可分问题也是通过求解对偶问题而得到原始问题的解,进而确定线性分隔超平面和分类决策函数。

假设 α ∗ = ( α 1 ∗ , α 2 ∗ , … , α N ∗ ) T \alpha^* = (\alpha_1^*, \alpha_2^*, \dots, \alpha_N^*)^T α=(α1,α2,,αN)T 是对偶最优化问题式(9-40)的解,根据拉格朗日对偶理论相关推论,式(9-40)满足KKT(Karush-Kuhn-Tucker)条件,有:
∂ L ∂ w = w ∗ − ∑ i = 1 N α i ∗ y i x i = 0 (9-51) \frac{\partial L}{\partial w} = w^* - \sum_{i=1}^N \alpha_i^* y_i x_i = 0 \tag{9-51} wL=wi=1Nαiyixi=0(9-51)

∂ L ∂ b = − ∑ i = 1 N α i ∗ y i = 0 (9-52) \frac{\partial L}{\partial b} = -\sum_{i=1}^N \alpha_i^* y_i = 0 \tag{9-52} bL=i=1Nαiyi=0(9-52)

∂ L ∂ ξ = C − α ∗ − μ ∗ = 0 (9-53) \frac{\partial L}{\partial \xi} = C - \alpha^* - \mu^* = 0 \tag{9-53} ξL=Cαμ=0(9-53)

α i ∗ ( y i ( w ∗ ⋅ x i + b ∗ ) − 1 + ξ i ∗ ) = 0 (9-54) \alpha_i^*(y_i(w^* \cdot x_i + b^*) - 1 + \xi_i^*) = 0 \tag{9-54} αi(yi(wxi+b)1+ξi)=0(9-54)

μ i ∗ ξ i ∗ = 0 (9-55) \mu_i^* \xi_i^* = 0 \tag{9-55} μiξi=0(9-55)

y i ( w ∗ ⋅ x i + b ∗ ) − 1 + ξ i ∗ ≥ 0 (9-56) y_i(w^* \cdot x_i + b^*) - 1 + \xi_i^* \geq 0 \tag{9-56} yi(wxi+b)1+ξi0(9-56)

ξ i ∗ ≥ 0 (9-57) \xi_i^* \geq 0 \tag{9-57} ξi0(9-57)

α i ∗ ≥ 0 (9-58) \alpha_i^* \geq 0 \tag{9-58} αi0(9-58)

μ i ∗ ≥ 0 , i = 1 , 2 , … , N (9-59) \mu_i^* \geq 0, \quad i = 1, 2, \dots, N \tag{9-59} μi0,i=1,2,,N(9-59)

可解得:
w ∗ = ∑ i = 1 N α i ∗ y i x i (9-60) w^* = \sum_{i=1}^N \alpha_i^* y_i x_i \tag{9-60} w=i=1Nαiyixi(9-60)

b ∗ = y j − ∑ i = 1 N α i ∗ y i ( x i ⋅ x j ) (9-61) b^* = y_j - \sum_{i=1}^N \alpha_i^* y_i (x_i \cdot x_j) \tag{9-61} b=yji=1Nαiyi(xixj)(9-61)

以上就是近似线性可分支持向量机的基本推导过程。从过程来看,近似线性可分问题求解推导与线性可分问题的求解推导非常类似。


以下是部分公式更加详细的解释:
公式 9-37
公式 9-38
公式 9-40
公式 9-41
公式 9-50
公式 9-51 ~ 9-59

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/901633.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【JavaEE初阶】网络原理-TCP连接管理之“三次握手和四次挥手”

前言 🌟🌟本期讲解关于TCP协议的重要的机制“连接的建立和断开”~~~ 🌈感兴趣的小伙伴看一看小编主页:GGBondlctrl-CSDN博客 🔥 你的点赞就是小编不断更新的最大动力 &…

Linux 部署 mysql

Linux(四)- Ubuntu安装Mysql_mysql-community-server-core depends on libaio1 (>-CSDN博客 #创建用户 打开终端。 登录到MySQL服务器: mysql -u root -p 创建新用户。替换new_user为您想要的用户名,password为新用户的密码&am…

python异常监测-ARIMA(自回归积分滑动平均模型)

系列文章目录 Python异常检测- Isolation Forest(孤立森林) python异常检测 - 随机离群选择Stochastic Outlier Selection (SOS) python异常检测-局部异常因子(LOF)算法 Python异常检测- DBSCAN Python异常检测- 单类支持向量机(…

python之数据结构与算法(数据结构篇)-- 元组

一、元组的概念 其实,所谓的“元组”就是一组不能改变的特殊数组(一般情况下),这里我们去创建一个“小羊元组”,大家就能更加明白其中的意思了。 二、元组实现思路 1.我们去定义一个“羊村小羊”的元组 # 创建一个"羊村小羊"的元…

SystemC学习(2)— APB_SRAM的建模与测试

SystemC学习(2)— APB_SRAM的建模与测试 一、前言 二、APB_SRAM建模 编写APB_SRAM模型文件apb_sram.h文件如下所示: #ifndef __APB_SRAM_H #define __APB_SRAM_H#include "systemc.h"const int ADDR_SIZE 32; const int DATA_…

【专题】计算机网络之数据链路层

数据链路层的地位:网络中的主机、路由器等都必须实现数据链路层。 数据链路层信道类型: 点对点信道。 使用一对一的点对点通信方式。 广播信道。 使用一对多的广播通信方式。 必须使用专用的共享信道协议来协调这些主机的数据发送。 1. 使用点对点信道…

三次握手与四次挥手

1.三次握手 1.1状态机 客户端 SYN_SENT:客户端发送SYN报文段请求建立连接 ESTABLISHED:在收到服务端发来的SYN请求报文以及确认报文后就建立客户端到服务端的连接 服务端 LISTEN:一开始时LISTEN状态,等待客户端的SYN请求 SY…

群晖系统基本命令

切换超级管理员 sudo -i 查询系统 运行的所有服务 synoservicecfg --list 启动服务命令(该命令需要使用超级管理员) #老版本群晖使用synoservice命令 synoservice --start 服务名称#新版本群晖使用systemctl命令 systemctl start 服务名称 synoservice所管理的服务配置文…

MySql数据库中数据类型

本篇将介绍在 MySql 中的所有数据类型,其中主要分为四类:数值类型、文本和二进制类型、时间日期、String 类型。如下(图片来源:MySQL数据库): 目录如下: 目录 数值类型 1. 整数类型 2. …

【网站项目】SpringBoot397学校财务管理系统

🙊作者简介:多年一线开发工作经验,原创团队,分享技术代码帮助学生学习,独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取,记得注明来意哦~🌹赠送计算机毕业设计600个选题excel文…

【论文阅读】SRGAN

学习资料 论文题目:基于生成对抗网络的照片级单幅图像超分辨率(Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network)论文地址:https://arxiv.org/abs/1609.04802 代码:GitHub - x…

【Python爬虫实战】Selenium自动化网页操作入门指南

#1024程序员节|征文# 🌈个人主页:易辰君-CSDN博客 🔥 系列专栏:https://blog.csdn.net/2401_86688088/category_12797772.html ​ 目录 前言 一、准备工作 (一)安装 Selenium 库 &#xff0…

SpringBoot项目里怎么简单高效使用Redis?我选择使用Lock4j

文章目录 前言正文1、Lock4j的代码仓库2、pine-manage-common-redis的项目结构3、pine-manage-common-redis 的完整代码3.1 maven依赖:pom.xml3.2 redis连接参数:application.yaml3.3 RedisCache.java3.4 CacheConfig.java3.5 RedissonClientUtil.java3.…

Python | Leetcode Python题解之第509题斐波那契数

题目&#xff1a; 题解&#xff1a; class Solution:def fib(self, n: int) -> int:if n < 2:return nq [[1, 1], [1, 0]]res self.matrix_pow(q, n - 1)return res[0][0]def matrix_pow(self, a: List[List[int]], n: int) -> List[List[int]]:ret [[1, 0], [0, …

Redisson(三)应用场景及demo

一、基本的存储与查询 分布式环境下&#xff0c;为了方便多个进程之间的数据共享&#xff0c;可以使用RedissonClient的分布式集合类型&#xff0c;如List、Set、SortedSet等。 1、demo <parent><groupId>org.springframework.boot</groupId><artifact…

spygalss cdc 检测的bug(二)

当allow_qualifier_merge设置为strict的时候&#xff0c;sg是要检查门的极性的。 如果qualifier和src经过与门汇聚&#xff0c;在同另一个src1信号或门汇聚&#xff0c;sg是报unsync的。 假设当qualifier为0时&#xff0c;0&&src||src1src1&#xff0c;src1无法被gat…

Mysql入门3——多表操作、事务、索引

Mysql入门3——多表操作、事务、索引 一、多表设计 ​ 在项目开发中&#xff0c;在进行数据库表的结构设计时&#xff0c;会根据业务需求及业务模块之前的关系&#xff0c;分析并设计表的结构&#xff0c;由于业务之间相互关联&#xff0c;所以各个表之间也存在着各种关系&am…

基于SSM的智慧篮球馆预约系统

前言 近些年&#xff0c;随着中国经济发展&#xff0c;人民的生活质量逐渐提高&#xff0c;对网络的依赖性越来越高&#xff0c;通过网络处理的事务越来越多。随着智慧篮球馆预约的常态化&#xff0c;如果依然采用传统的管理方式&#xff0c;将会为工作人员带来庞大的工作量&a…

css设置滚动条样式

效果图&#xff1a; // 滚动条样式 div::-webkit-scrollbar {width: 4px; } /* 滚动条滑块&#xff08;里面小方块&#xff09; */ div::-webkit-scrollbar-thumb {border-radius: 10px;-webkit-box-shadow: inset 0 0 5px rgba(0, 0, 0, 0.2);opacity: 0.2;background-color…

【面试经典150】day 8

#1024程序员节 | 征文# 作为一个未来的程序员&#xff0c;现在我要继续刷题了。 力扣时刻。 目录 1.接雨水 2.罗马数字转整数 3.最后一个单词的长度 4.最长公共前缀 5.反转字符串中的单词 1.接雨水 好好好好好好&#xff0c;一开始就接雨水。我记得接了n次了。。。 痛苦战…