从0开始深度学习(17)——数值稳定性和模型初始化

在每次训练之前,都会对模型的参数进行初始化,初始化方案的选择在神经网络学习中起着举足轻重的作用, 它对保持数值稳定性至关重要。
我们选择哪个函数以及如何初始化参数可以决定优化算法收敛的速度有多快。 糟糕选择可能会导致我们在训练时遇到梯度爆炸梯度消失

1 梯度消失和梯度爆炸

不稳定梯度带来的风险不止在于数值表示; 不稳定梯度也威胁到我们优化算法的稳定性。 我们可能面临一些问题:
要么是**梯度爆炸(gradient exploding)问题: 参数更新过大,破坏了模型的稳定收敛;
要么是
梯度消失(gradient vanishing)**问题: 参数更新过小,在每次更新时几乎不会移动,导致模型无法学习。

1.1 梯度消失

这里以sigmoid函数为例,因为它类似于阈值函数,所以也容易导致梯度消失,我们创建了一个从 -8.0 到 8.0,步长为 0.1 的一维张量 x,使用sigmoid函数,然后计算 y 对 x 的梯度,最后输出一个横轴是x,y轴是梯度的图像

%matplotlib inline
import torch
from d2l import torch as d2l

x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = torch.sigmoid(x)
y.backward(torch.ones_like(x))

d2l.plot(x.detach().numpy(), [y.detach().numpy(), x.grad.numpy()],
         legend=['sigmoid', 'gradient'], figsize=(4.5, 2.5))

在这里插入图片描述
我们发现,当sigmoid函数的输入很大或是很小时,它的梯度都会消失,所以一旦某个网络层的输入过大或者过小,梯度就会消失, 因此,更稳定的ReLU系列函数称为了默认选择

1.2 梯度爆炸

通过构造一个简单的递归函数或链式乘法,可以看到梯度在反向传播过程中如何逐渐增大

%matplotlib inline
import torch
from d2l import torch as d2l

# 构造从 -1 到 1 的输入数据,并启用梯度计算
x = torch.tensor(1.0, requires_grad=True)

# 模拟梯度爆炸:我们构造一个由 100 个常数值相乘的过程
y = x
for i in range(100):  # 重复 100 次
    y = y * 1.1  # 每次乘以 1.1

# 反向传播
y.backward()

# 绘制结果
x_grad = x.grad.item()
print(f"x 的梯度值为: {x_grad}")

# 由于我们反复放大,梯度会呈指数增长,这就是梯度爆炸的表现。

当这种情况是由于深度网络的初始化所导致时,我们没有机会让梯度下降优化器收敛。

1.3 对称性问题

如果所有的神经元(同一层中的神经元)具有相同的初始权重,它们将学到相同的特征。这种现象会让网络的学习过程失去多样性,进而影响模型的表达能力和训练效果。

例如,如果你把每一层的所有神经元的权重都初始化为 0 或相同的值,网络中的每个神经元都会执行相同的计算,这样就失去了通过不同神经元学习不同特征的意义。

1.4 打破对称性

打破对称性就是在网络初始化时,为每个神经元赋予不同的初始权重值,确保它们在训练过程中能学习到不同的特征。通常的做法是随机初始化权重,同样的还能使用暂退法正则化来打破

2 参数初始化

解决(或至少减轻)上述问题的一种方法是进行参数初始化

2.1 默认初始化

之前的例子中,我们一直使用的是正态分布来初始化权重,如果不指定,pytorch框架会使用默认的随机初始化方法。

2.2 Xavier初始化( Glorot 初始化)

核心思想:
Xavier 初始化的目标是确保信号的方差在每一层传播时保持一致,即:

  • 前向传播中,输出的激活值的方差保持稳定,避免过大或过小。
  • 反向传播中,梯度的方差同样保持稳定,避免梯度爆炸或梯度消失。

为了实现这个目标,Xavier 初始化根据输入和输出层的神经元数量,计算合适的初始权重分布。具体公式如下:

对于权重矩阵中的每个元素 W i j W_{ij} Wij ,其初始化值从一个均匀分布或正态分布中随机采样:

  1. 均匀分布:

在这里插入图片描述

  1. 正态分布:

在这里插入图片描述

​其中:

  • n i n n_{in} nin是该层神经元的输入节点数量(上一层的神经元数量)。
  • n o u t n_{out} nout是该层神经元的输出节点数量(下一层的神经元数量)。

PyTorch 中提供了 Xavier 初始化的方法,可以直接使用 torch.nn.init.xavier_uniform_ 或 torch.nn.init.xavier_normal_ 来应用 Xavier 初始化。

import torch
import torch.nn as nn

linear = nn.Linear(100, 50)  
# 使用 Xavier 均匀初始化
nn.init.xavier_uniform_(linear.weight)
# 如果需要 Xavier 正态分布初始化
# nn.init.xavier_normal_(linear.weight)

Xavier 初始化通过平衡前向和反向传播中信号和梯度的方差,能够有效地帮助深层网络稳定训练,特别是对于使用 sigmoid 或 tanh 激活函数的网络非常重要。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/901234.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

云电脑的真实使用体验

最近这几年,关于云电脑的宣传越来越多。 小枣君之前曾经给大家介绍过云电脑(链接)。简单来说,它属于云计算的一个应用。通过在云端虚拟出一些虚拟电脑,然后让用户可以远程使用(仍然需要借助本地电脑&#x…

jupyter notebook改变默认启动路径

安装好Anaconda 3以后,就可以使用Jupyter notebook了,但是我们打开Jupyter notebook后,发现界面是一个默认的目录,这个目录在哪里?如果想把自己写的程序文件保存在自己新建的一个文件夹里,修改默认目录到自建的文件夹下,该如何做呢! 先看一下Jupyter notebook的默认界…

【ubuntu18.04】ubuntu18.04升级cmake-3.29.8及还原系统自带cmake操作说明

参考链接 cmake升级、更新(ubuntu18.04)-CSDN博客 升级cmake操作说明 下载链接 Download CMake 下载版本 下载软件包 cmake-3.30.3-linux-x86_64.tar.gz 拷贝软件包到虚拟机 cp /var/run/vmblock-fuse/blockdir/jrY8KS/cmake-3.29.8-linux-x86_64…

【华为路由】OSPF多区域配置

网络拓扑 设备接口地址 设备 端口 IP地址 RTA Loopback 0 1.1.1.1/32 G0/0/0 10.1.1.1/24 RTB Loopback 0 2.2.2.2/32 G0/0/0 10.1.1.2/24 G0/0/1 10.1.2.1/24 RTC Loopback 0 3.3.3.3/32 G0/0/0 10.1.2.2/24 G0/0/1 10.1.3.1/24 RTD Loopback 0 4.4.4…

大模型Transformer笔记:KV缓存

1 MHA(Multi-Head Attention) 最经典的多头注意力 等价于多个独立的单头注意力的拼接 对于LLM来说,一般都是自回归地一个一个token的输出,也就相当于只有Transformer的decoder input在变化,之前作为prompt部分的是不变…

java智能物流管理系统源码(springboot)

项目简介 智能物流管理系统实现了以下功能: 智能物流管理系统的主要使用者分为管理员,顾客,员工,店主。功能有个人中心,顾客管理,员工管理,店主管理,门店信息管理,门店…

【制造业&电子产品】电脑电子元件检测系统源码&数据集全套:改进yolo11-TADDH

改进yolo11-SCConv等200全套创新点大全:电脑电子元件检测系统源码&数据集全套 1.图片效果展示 项目来源 人工智能促进会 2024.10.24 注意:由于项目一直在更新迭代,上面“1.图片效果展示”和“2.视频效果展示”展示的系统图片或者…

蓝桥杯题目理解

1. 一维差分 1.1. 小蓝的操作 1.1.1. 题目解析: 这道题提到了对于“区间”进行操作,而差分数列就是对于区间进行操作的好方法。 观察差分数列: 给定数列:1 3 5 2 7 1 差分数列:1 2 2 -3 5 6 题目要求把原数组全部…

基于Springboot+Vue的食品商城系统 (含源码数据库)

1.开发环境 开发系统:Windows10/11 架构模式:MVC/前后端分离 JDK版本: Java JDK1.8 开发工具:IDEA 数据库版本: mysql5.7或8.0 数据库可视化工具: navicat 服务器: SpringBoot自带 apache tomcat 主要技术: Java,Springboot,mybatis,mysql,vue 2.视频演示地址 3.功能 这个系…

duilib的应用 在双屏异分辨率的显示器上 运行显示不出来

背景:win11,duilib应用,双显示器,两台分辨率相同,分别设置不同的缩放以后,应用运行以后,程序闪一下消失或者程序还在,但是UI显示不出来。 原因 窗口风格设置不合理,所以…

记录贴 为VScode配置C语言环境

大致步骤参考这位博主的过程:如何在 VS Code 中编写、运行C语言程序 教程_visual studio code怎么写c语言-CSDN博客 第一步:安装VScode。 第二步:安装两个插件:C/C Extension Pack和code runner。(后面我发现&#x…

django5入门【03】新建一个hello界面

文章目录 1、前提条件⭐2、操作步骤总结3、实际操作示例 1、前提条件⭐ 将上一节创建的 Django 项目导入到 PyCharm 中。 2、操作步骤总结 (1)在 HelloDjango/HelloDjango 目录下,新建一个 views.py 文件。 (2)在 H…

WebGl 缩放矩阵

缩放矩阵是线性代数中的一种矩阵,用于描述图形在空间中沿着各个坐标轴进行均匀缩放的变换。在3D图形编程中,缩放矩阵通常用于调整物体的大小,而不改变其形状。 | x 0 0 0 | | 0 y 0 0 | | 0 0 z 0 | | 0 0 0 1 | 其中&#xff0…

2024 Rust现代实用教程:1.3获取rust的库国内源以及windows下的操作

文章目录 一、使用Cargo第三方库1.直接修改Cargo.toml2.使用cargo-edit插件3.设置国内源4.与windows下面的rust不同点 参考 一、使用Cargo第三方库 1.直接修改Cargo.toml rust语言的库:crate 黏贴至Cargo.toml 保存完毕之后,自动下载依赖 拷贝crat…

Java中自增自减,赋值,逻辑,三元运算符

自增自减运算符 在某个变量前面或者后面加一--在某个变量前面或者后面减一 可以看见,当a输出时,a是没有变化的,说明如果是在变量后就是先使用再增加,而b输出时,b增加了1,说明如果是在变量前面就是先增加再…

Android Activity 启动模式

Standard 启动模式 页面跳转顺序 MainActivity -> StandardActivity -> StandardActivity -> StandardActivity 页面栈 示例图 任务栈中只存在MainActivity时 任务栈中存在MainActivity、StandardActivity MainActivity -> StandardActivity MainActivity…

echarts给Y轴的不同轴线设置不同的颜色的样式

官方文档 option {xAxis: {type: category,data: [Mon, Tue, Wed, Thu, Fri, Sat, Sun]},yAxis: {type: value},series: [{data: [150, 230, 224, 218, 135, 147, 260],type: line,}] }; 效果: 需要添加参数markLine option {xAxis: {type: category,data: [M…

python实战(一)——iris鸢尾花数据集分类

一、任务背景 本文是python实战系列专栏的第一篇文章,我们将从分类开始由浅入深逐步学习如何使用python完成常规的机器学习/深度学习任务。iris数据集是经典的机器学习入门数据集,许多分类任务教程都会以这个数据集作为示例,它的数据量是150条…

大语言模型微调方法详解【全量微调、PEFT、LoRA、Adapter】

NLP-大语言模型学习系列目录 一、注意力机制基础——RNN,Seq2Seq等基础知识 二、注意力机制【Self-Attention,自注意力模型】 三、Transformer图文详解【Attention is all you need】 四、大语言模型的Scaling Law【Power Low】 五、大语言模型微调 文章目录 NLP-大语言模型学…

12个免费商用视频素材网站,助你打造高质量短视频!

我来啦,作为一个资深短视频运营! 在剪辑了1362条片子后,我总结出下面的这些素材网站~ 基本上都是剪辑中常用到的,下载的视频也是MP4格式,直接就可以用,还有图片、音效和Pr教程推荐,总有一款适…