skywalking服务部署

一、前言

Apache SkyWalking 是一个开源的分布式跟踪、监控和诊断系统,旨在帮助用户监控和诊断分布式应用程序、微服务架构和云原生应用的性能和健康状况。它提供了可视化的分析工具,帮助开发人员和运维团队深入了解应用程序的性能、调用链和异常情况

功能特点

分布式跟踪: SkyWalking 能够追踪分布式应用程序的请求调用链,显示每个请求从发起到结束的完整流程,包括各个组件和服务之间的调用关系。这有助于定位性能瓶颈和延迟问题

性能监控: SkyWalking 收集并展示应用程序的性能指标,如响应时间、吞吐量、错误率等,以图表和图形的形式呈现,帮助用户监控应用程序的健康状况

实时告警: SkyWalking 具备实时告警功能,可以根据用户定义的条件和阈值生成警报。当应用程序出现性能问题或异常时,系统会发送通知,让团队能够及时采取行动

多语言支持: SkyWalking 支持多种编程语言和技术栈,包括 Java、Python、Go、.NET 等。这使得它适用于各种类型的应用程序

可视化界面: SkyWalking 提供了直观的 Web 界面,用户可以通过图表、仪表盘和可视化的调用链图来查看和分析应用程序的性能数据

二、部署

部署skywalking之前需要先部署java环境,我用的是skywalking的9.4.0版本,所有需要使用jdk11本版的java环境

部署java参考:jdk1.8环境配置_Apex Predator的博客-CSDN博客

 部署skywalking服务,需要先下载安装包,我这边使用的是9.4.0版本

下载路径参考:Downloads | Apache SkyWalking

 

 

 创建skywalking存放目录并将安装包放到该目录下解压

mkdir /opt/skywalking && cd /opt/skywalking

tar -zxvf apache-skywalking-apm-9.4.0.tar.gz && mv apache-skywalking-apm-9.4.0 skywalking

编辑skywalking配置文件,主要是配置数据存放的选择,默认使用自带的h2存储,我们这边改成使用elasticsearch作为存储

vi skywalking/config/application.yml

storage:
  selector: ${SW_STORAGE:elasticsearch}    #配置为以下elasticsearch配置的名称
  elasticsearch:       #将此项名称填入上面的配置中
    namespace: ${SW_NAMESPACE:""}
    clusterNodes: ${SW_STORAGE_ES_CLUSTER_NODES:10.1.60.114:9200,10.1.60.115:9200}  #配置elasticsearch集群的地址
    protocol: ${SW_STORAGE_ES_HTTP_PROTOCOL:"http"}
    connectTimeout: ${SW_STORAGE_ES_CONNECT_TIMEOUT:3000}
    socketTimeout: ${SW_STORAGE_ES_SOCKET_TIMEOUT:30000}
    responseTimeout: ${SW_STORAGE_ES_RESPONSE_TIMEOUT:15000}
    numHttpClientThread: ${SW_STORAGE_ES_NUM_HTTP_CLIENT_THREAD:0}
    user: ${SW_ES_USER:""}
    password: ${SW_ES_PASSWORD:""}
    trustStorePath: ${SW_STORAGE_ES_SSL_JKS_PATH:""}
    trustStorePass: ${SW_STORAGE_ES_SSL_JKS_PASS:""}
    secretsManagementFile: ${SW_ES_SECRETS_MANAGEMENT_FILE:""} # Secrets management file in the properties format includes the username, password, which are managed by 3rd party tool.
    dayStep: ${SW_STORAGE_DAY_STEP:1} # Represent the number of days in the one minute/hour/day index.
    indexShardsNumber: ${SW_STORAGE_ES_INDEX_SHARDS_NUMBER:1} # Shard number of new indexes
    indexReplicasNumber: ${SW_STORAGE_ES_INDEX_REPLICAS_NUMBER:1} # Replicas number of new indexes
    # Specify the settings for each index individually.
    # If configured, this setting has the highest priority and overrides the generic settings.
    specificIndexSettings: ${SW_STORAGE_ES_SPECIFIC_INDEX_SETTINGS:""}
    # Super data set has been defined in the codes, such as trace segments.The following 3 config would be improve es performance when storage super size data in es.
    superDatasetDayStep: ${SW_STORAGE_ES_SUPER_DATASET_DAY_STEP:-1} # Represent the number of days in the super size dataset record index, the default value is the same as dayStep when the value is less than 0
    superDatasetIndexShardsFactor: ${SW_STORAGE_ES_SUPER_DATASET_INDEX_SHARDS_FACTOR:5} #  This factor provides more shards for the super data set, shards number = indexShardsNumber * superDatasetIndexShardsFactor. Also, this factor effects Zipkin traces.
    superDatasetIndexReplicasNumber: ${SW_STORAGE_ES_SUPER_DATASET_INDEX_REPLICAS_NUMBER:0} # Represent the replicas number in the super size dataset record index, the default value is 0.
    indexTemplateOrder: ${SW_STORAGE_ES_INDEX_TEMPLATE_ORDER:0} # the order of index template
    bulkActions: ${SW_STORAGE_ES_BULK_ACTIONS:5000} # Execute the async bulk record data every ${SW_STORAGE_ES_BULK_ACTIONS} requests
    batchOfBytes: ${SW_STORAGE_ES_BATCH_OF_BYTES:10485760} # A threshold to control the max body size of ElasticSearch Bulk flush.
    # flush the bulk every 5 seconds whatever the number of requests
    flushInterval: ${SW_STORAGE_ES_FLUSH_INTERVAL:5}
    concurrentRequests: ${SW_STORAGE_ES_CONCURRENT_REQUESTS:2} # the number of concurrent requests
    resultWindowMaxSize: ${SW_STORAGE_ES_QUERY_MAX_WINDOW_SIZE:10000}
    metadataQueryMaxSize: ${SW_STORAGE_ES_QUERY_MAX_SIZE:10000}
    scrollingBatchSize: ${SW_STORAGE_ES_SCROLLING_BATCH_SIZE:5000}
    segmentQueryMaxSize: ${SW_STORAGE_ES_QUERY_SEGMENT_SIZE:200}
    profileTaskQueryMaxSize: ${SW_STORAGE_ES_QUERY_PROFILE_TASK_SIZE:200}
    profileDataQueryBatchSize: ${SW_STORAGE_ES_QUERY_PROFILE_DATA_BATCH_SIZE:100}
    oapAnalyzer: ${SW_STORAGE_ES_OAP_ANALYZER:"{\"analyzer\":{\"oap_analyzer\":{\"type\":\"stop\"}}}"} # the oap analyzer.
    oapLogAnalyzer: ${SW_STORAGE_ES_OAP_LOG_ANALYZER:"{\"analyzer\":{\"oap_log_analyzer\":{\"type\":\"standard\"}}}"} # the oap log analyzer. It could be customized by the ES analyzer configuration to support more language log formats, such as Chinese log, Japanese log and etc.
    advanced: ${SW_STORAGE_ES_ADVANCED:""}
    # Enable shard metrics and records indices into multi-physical indices, one index template per metric/meter aggregation function or record.
    logicSharding: ${SW_STORAGE_ES_LOGIC_SHARDING:false}
    # Custom routing can reduce the impact of searches. Instead of having to fan out a search request to all the shards in an index, the request can be sent to just the shard that matches the specific routing value (or values).
    enableCustomRouting: ${SW_STORAGE_ES_ENABLE_CUSTOM_ROUTING:false}
  h2:
    properties:
      jdbcUrl: ${SW_STORAGE_H2_URL:jdbc:h2:mem:skywalking-oap-db;DB_CLOSE_DELAY=-1}
      dataSource.user: ${SW_STORAGE_H2_USER:sa}
    metadataQueryMaxSize: ${SW_STORAGE_H2_QUERY_MAX_SIZE:5000}
    maxSizeOfBatchSql: ${SW_STORAGE_MAX_SIZE_OF_BATCH_SQL:100}
    asyncBatchPersistentPoolSize: ${SW_STORAGE_ASYNC_BATCH_PERSISTENT_POOL_SIZE:1}

配置skywalking web服务

vi skywalking/webapp/application.yml

serverPort: ${SW_SERVER_PORT:-18080}    #默认端口为8080,避免冲突改为18080

# Comma seperated list of OAP addresses.
oapServices: ${SW_OAP_ADDRESS:-http://localhost:12800}  #这些配置保持默认即可

zipkinServices: ${SW_ZIPKIN_ADDRESS:-http://localhost:9412}

 启动skywalking服务

./skywalking/bin/startup.sh

可以看到oap服务和web服务都启动成功了

查看skywalking的端口

netstat -tlpn

 以上五个端口都是skywalking使用的服务端口,如果有端口被占用服务就会起不来

访问skywalking web服务

http://10.1.60.115:18080

我这边是已经配置了agent监控java服务,所以会有服务信息,配置agent监控java服务会在下一篇讲解 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/89874.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于YOLOv8模型和DarkFace数据集的黑夜人脸检测系统(PyTorch+Pyside6+YOLOv8模型)

摘要:基于YOLOv8模型和DarkFace数据集的黑夜人脸检测系统可用于日常生活中检测与定位黑夜下的人脸,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目…

词向量及文本向量

文章目录 引言1. 文本向量化2. one-hot编码3. 词向量-word2vec3.1 词向量-基于语言模型 4 词向量 - word2vec基于窗口4.1 词向量-如何训练 5. Huffman树6. 负采样-negative sampling7. Glove基于共现矩阵7.1 Glove词向量7.2 Glove对比word2vec 8. 词向量训练总结9. 词向量应用9…

《剑指Offer》模块4 栈和队列

栈和队列 1. 用两个栈实现队列 原题链接 补充&#xff1a;copy(a,b) 把a赋值给b class MyQueue { public:/** Initialize your data structure here. */stack<int> stk, cache;MyQueue() {}/** Push element x to the back of queue. */void push(int x) {stk.push(x)…

UWB高精度人员定位系统源码,微服务+java+ spring boot+ vue+ mysql技术开发

工业物联网感知预警体系&#xff0c;大中小企业工业数字化转型需求的工业互联网平台 工厂人员定位系统是指能够对工厂中的人员、车辆、设备等进行定位&#xff0c;实现对人员和车辆的实时监控与调度的系统&#xff0c;是智慧工厂建设中必不可少的一环。由于工厂的工作环境比较…

基于微信小程序的餐厅预订系统的设计与实现(论文+源码)_kaic

摘 要 随着消费升级&#xff0c;越来越多的年轻人已经开始不再看重餐饮等行业的服务&#xff0c;而是追求一种轻松自在的用餐、购物环境。因此&#xff0c;无人餐厅、无人便利店、无人超市等一些科技消费场所应势而生。餐饮企业用工荒已成为不争的事实。服务员行业的低保障、低…

癌症预测新利器:弹性逻辑回归让健康更可控!

一、引言 癌症是全球范围内健康领域的重大挑战&#xff0c;早期预测和诊断对于提高治疗效果和生存率至关重要。在过去的几十年里&#xff0c;随着医学和数据科学的快速发展&#xff0c;基于机器学习和统计方法的癌症风险预测成为研究的热点。其中&#xff0c;弹性逻辑回归作为一…

注解和class对象和mysql

注解 override 通常是用在方法上的注解表示该方法是有重写的 interface 表示一个注解类 比如 public interface override{} 这就表示是override是一个注解类 target 修饰注解的注解表示元注解 deprecated 修饰某个元素表示该元素已经过时了 1.不代表该元素不能用了&…

【中危】Apache XML Graphics Batik<1.17 存在SSRF漏洞 (CVE-2022-44729)

zhi.oscs1024.com​​​​​ 漏洞类型SSRF发现时间2023-08-23漏洞等级中危MPS编号MPS-2022-63578CVE编号CVE-2022-44729漏洞影响广度极小 漏洞危害 OSCS 描述Apache XML Graphics Batik 是一个开源的、用于处理可缩放矢量图形(SVG)格式图像的工具库。 受影响版本中&#xff0…

足球- EDA的历史数据分析并可视化

足球- EDA的历史数据分析并可视化 背景数据介绍探索数据时需要遵循的一些方向:数据处理导入库数据探索 数据可视化赛事分析主客场比分相关性分析时间序列分析 总结 背景 该数据集包括从1872年第一场正式比赛到2023年的44&#xff0c;341场国际足球比赛的结果。比赛范围从FIFA世…

机器学习实战之模型的解释性:Scikit-Learn的SHAP和LIME库

概要 机器学习模型的“黑箱”困境 机器学习模型的崛起让我们惊叹不已&#xff01;不论是预测房价、识别图片中的猫狗&#xff0c;还是推荐给你喜欢的音乐&#xff0c;这些模型都表现得非常出色。但是&#xff0c;有没有想过&#xff0c;这些模型到底是如何做出这些决策的呢&a…

打破数据孤岛!时序数据库 TDengine 与创意物联感知平台完成兼容性互认

新型物联网实现良好建设的第一要务就是打破信息孤岛&#xff0c;将数据汇聚在平台统一处理&#xff0c;实现数据共享&#xff0c;放大物联终端的行业价值&#xff0c;实现系统开放性&#xff0c;以此营造丰富的行业应用环境。在此背景下&#xff0c;物联感知平台应运而生&#…

联合注入步骤

使用场景&#xff1a; 有回显&#xff0c;可以看到某些字段的回显信息 像下面的有具体的回显信息 一、判断注入位点 在原始的id&#xff08;参数&#xff09;的输入后面添加额外的条件 如果and 11 有结果&#xff0c;and10没有结果输出&#xff0c; 就说明我们添加的额外条件…

iOS App签名与重签名:从开发者证书到重新安装运行

前文回顾&#xff1a; iOS脱壳技术&#xff08;二&#xff09;&#xff1a;深入探讨dumpdecrypted工具的高级使用方法 iOS逆向&#xff1a;越狱及相关概念的介绍 在本文中&#xff0c;我们将详细介绍iOS应用的签名过程&#xff0c;包括开发者证书的种类、证书与App ID、Provisi…

CleanMyMac2024永久版Mac清理工具

Mac电脑作为相对封闭的一个系统&#xff0c;它会中毒吗&#xff1f;如果有一天Mac电脑产生了疑似中毒或者遭到恶意不知名攻击的现象&#xff0c;那又应该如何从容应对呢&#xff1f;这些问题都是小编使用Mac系统一段时间后产生的疑惑&#xff0c;通过一番搜索研究&#xff0c;小…

2023京东酒类市场数据分析(京东数据开放平台)

根据鲸参谋平台的数据统计&#xff0c;今年7月份京东平台酒类环比集体下滑&#xff0c;接下来我们一起来看白酒、啤酒、葡萄酒的详情数据。 首先来看白酒市场。 鲸参谋数据显示&#xff0c;7月份京东平台白酒的销量为210万&#xff0c;环比下滑约49%&#xff1b;销售额将近19…

MAE 论文精读 | 在CV领域自监督的Bert思想

1. 背景 之前我们了解了VIT和transformer MAE 是基于VIT的&#xff0c;不过像BERT探索了自监督学习在NLP领域的transformer架构的应用&#xff0c;MAE探索了自监督学习在CV的transformer的应用 论文标题中的Auto就是说标号来自于图片本身&#xff0c;暗示了这种无监督的学习 …

【LeetCode-中等题】238. 除自身以外数组的乘积

题目 题解一&#xff1a;暴力双指针—超时了 双指针暴力查找(需考虑begin end 和begin end i) 的情况 ----- 力扣示例超出时间限制 public int[] productExceptSelf(int[] nums) {int length nums.length;int begin 0;int end length -1;int i 0;int[] number new in…

无涯教程-进程 - 组会话控制

在本章中&#xff0c;我们将熟悉进程组&#xff0c;会话和作业控制。 进程组(Process Groups ) - 进程组是一个或多个进程的集合&#xff0c;一个进程组由一个或多个共享相同进程组标识符(PGID)的进程组成。 会话(Sessions) - 它是各种进程组的集合。…

二叉树中的最大路径和-递归

路径 被定义为一条从树中任意节点出发&#xff0c;沿父节点-子节点连接&#xff0c;达到任意节点的序列。同一个节点在一条路径序列中 至多出现一次 。该路径 至少包含一个 节点&#xff0c;且不一定经过根节点。 路径和 是路径中各节点值的总和。 给你一个二叉树的根节点 root…

【分布式技术专题】「OSS中间件系列」从0到1的介绍一下开源对象存储MinIO技术架构

MinIO背景介绍 MinIO创始者是Anand Babu Periasamy, Harshavardhana&#xff08;戒日王&#xff09;等人&#xff0c; Anand是GlusterFS的初始开发者、Gluster公司的创始人与CTO&#xff0c;Harshavardhana曾经是GlusterFS的开发人员&#xff0c;直到2011年红帽收购了Gluster公…