win11环境下成功安装mamba

文章目录

  • 1. Mamba环境搭建
  • 2. triton安装
  • 3. causal_conv1d安装
    • 3.1 下载causal_conv1d工程文件源码
    • 3.2 修改setup.py文件
    • 3.3 安装 causal_conv1d
  • 4. Mamba安装
    • 4.1 下载mamba工程文件源码
    • 4.2 修改setup.py文件
    • 4.3 安装 mamba
  • 5. 查看所有成功安装的库
  • 6. 测试mamba安装是否成功
    • 6.1 测试成功
    • 6.2 测试失败:No module named 'causal_conv1d_cuda' 或 'selective_scan_cuda'
    • 6.3 解决方案
  • 7. 卸载causal_conv1d和mamba-ssm
  • 8. 下载所需文件

1. Mamba环境搭建

参考:https://blog.csdn.net/yyywxk/article/details/136071016

conda clean --all
conda create -n mamba_env python=3.10.13
conda activate mamba_env
conda install cudatoolkit==11.8 -c nvidia
pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url https://download.pytorch.org/whl/cu118
conda install -c "nvidia/label/cuda-11.8.0" cuda-nvcc
conda install packaging

2. triton安装

下载triton文件:https://github.com/PrashantSaikia/Triton-for-Windows/tree/main

# 激活刚才创建的mamba环境
conda activate mamba_env

# 安装triton
pip install 【文件路径】\triton-2.0.0-cp310-cp310-win_amd64.whl
# 如:pip install D:\mamba\triton-2.0.0-cp310-cp310-win_amd64.whl

3. causal_conv1d安装

3.1 下载causal_conv1d工程文件源码

下载causal_conv1d工程文件源码:https://github.com/Dao-AILab/causal-conv1d/releases
这里有各个版本的causal_conv1d,找到v1.1.1
在这里插入图片描述
进入v1.1.1资源界面:
在这里插入图片描述
拉到最后,点击Source code(zip),直接下载
在这里插入图片描述

3.2 修改setup.py文件

解压causal-conv1d-1.1.1.zip文件
将里面的源码setup.py进行以下改动:
参考:https://blog.csdn.net/yyywxk/article/details/136071016和https://blog.csdn.net/m0_59115667/article/details/137794459
在这里插入图片描述

将下面的代码

FORCE_BUILD = os.getenv("CAUSAL_CONV1D_FORCE_BUILD", "FALSE") == "TRUE"
SKIP_CUDA_BUILD = os.getenv("CAUSAL_CONV1D_SKIP_CUDA_BUILD", "FALSE") == "TRUE"
# For CI, we want the option to build with C++11 ABI since the nvcr images use C++11 ABI
FORCE_CXX11_ABI = os.getenv("CAUSAL_CONV1D_FORCE_CXX11_ABI", "FALSE") == "TRUE"

修改为

FORCE_BUILD = os.getenv("CAUSAL_CONV1D_FORCE_BUILD", "FALSE") == "FALSE"
SKIP_CUDA_BUILD = os.getenv("CAUSAL_CONV1D_SKIP_CUDA_BUILD", "FALSE") == "FALSE"
# For CI, we want the option to build with C++11 ABI since the nvcr images use C++11 ABI
FORCE_CXX11_ABI = os.getenv("CAUSAL_CONV1D_FORCE_CXX11_ABI", "FALSE") == "FALSE"

保存

3.3 安装 causal_conv1d

# 激活刚才创建的mamba环境
conda activate mamba_env

# 打开causal_conv1d所在文件夹
cd/d D:\Anaconda\Mamba\causal-conv1d-1.1.1      # 改成你自己的causal-conv1d-1.1.1文件路径

# 安装
pip install . 或者  python setup.py install

在这里插入图片描述

4. Mamba安装

4.1 下载mamba工程文件源码

下载mamba工程文件源码:https://github.com/state-spaces/mamba/releases?page=2
步骤跟causal_conv1d一样,这里有各个版本的mamba,找到v1.1.1

4.2 修改setup.py文件

解压mamba-1.1.1文件
mamba工程文件的源码setup.py中我们要进行以下改动:
将下面的代码

FORCE_BUILD = os.getenv("MAMBA_FORCE_BUILD", "FALSE") == "TRUE"
SKIP_CUDA_BUILD = os.getenv("MAMBA_SKIP_CUDA_BUILD", "FALSE") == "TRUE"

修改为

FORCE_BUILD = os.getenv("MAMBA_FORCE_BUILD", "FALSE") == "FALSE"
SKIP_CUDA_BUILD = os.getenv("MAMBA_SKIP_CUDA_BUILD", "FALSE") == "FALSE"

4.3 安装 mamba

# 激活mamba环境
conda activate mamba_env

# 打开文件夹
cd/d D:\Anaconda\Mamba\mamba-1.1.1    # 改成你自己的mamba-1.1.1文件路径

# 安装
pip install . 或者  python setup.py install

5. 查看所有成功安装的库

在这里插入图片描述

6. 测试mamba安装是否成功

# 激活mamba环境
conda activate mamba_env

# 进入python编译
python

# 加载库
import torch
import causal_conv1d
from mamba_ssm import Mamba


# 代码函数
batch, length, dim = 2, 64, 16
x = torch.randn(batch, length, dim).to("cuda")
model = Mamba(
    # This module uses roughly 3 * expand * d_model^2 parameters
    d_model=dim, # Model dimension d_model
    d_state=16,  # SSM state expansion factor
    d_conv=4,    # Local convolution width
    expand=2,    # Block expansion factor
).to("cuda")
y = model(x)
assert y.shape == x.shape
print('success')

6.1 测试成功

在这里插入图片描述

6.2 测试失败:No module named ‘causal_conv1d_cuda’ 或 ‘selective_scan_cuda’

from mamba_ssm import Mamba不成功
报错:ModuleNotFoundError: No module named ‘causal_conv1d_cuda’ || ‘selective_scan_cuda’
在这里插入图片描述
在这里插入图片描述

6.3 解决方案

  1. 根据报错文件路径,找到causal_conv1d_interface.pyselective_scan_interface.py文件
  2. 用vscode或其他编辑软件打开
  3. 注释或修改报错内容

a. causal_conv1d_interface.py和selective_scan_interface.py注释

文件:causal_conv1d_interface.py
# import causal_conv1d_cuda

文件:selective_scan_interface.py
# import causal_conv1d_cuda
# import selective_scan_cuda

b. 修改causal_conv1d_interface.py中的causal_conv1d_fn函数

def causal_conv1d_fn(x, weight, bias=None, seq_idx=None, activation=None):
    """
    x: (batch, dim, seqlen)
    weight: (dim, width)
    bias: (dim,)
    seq_idx: (batch, seqlen)
    activation: either None or "silu" or "swish"

    out: (batch, dim, seqlen)
    """
    return CausalConv1dFn.apply(x, weight, bias, seq_idx, activation)

修改为

def causal_conv1d_fn(x, weight, bias=None, seq_idx=None, activation=None):
    """
    x: (batch, dim, seqlen)
    weight: (dim, width)
    bias: (dim,)
    seq_idx: (batch, seqlen)
    activation: either None or "silu" or "swish"

    out: (batch, dim, seqlen)
    """
    return causal_conv1d_ref(x, weight, bias, activation)

c. 修改selective_scan_interface.py中的selective_scan_fn和mamba_inner_fn函数

def selective_scan_fn(u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False,
                     return_last_state=False):
    """if return_last_state is True, returns (out, last_state)
    last_state has shape (batch, dim, dstate). Note that the gradient of the last state is
    not considered in the backward pass.
    """
    return SelectiveScanFn.apply(u, delta, A, B, C, D, z, delta_bias, delta_softplus, return_last_state)
    
def mamba_inner_fn(
    xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
    out_proj_weight, out_proj_bias,
    A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
    C_proj_bias=None, delta_softplus=True
):
    return MambaInnerFn.apply(xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
                              out_proj_weight, out_proj_bias,
                              A, B, C, D, delta_bias, B_proj_bias, C_proj_bias, delta_softplus)

修改为

def selective_scan_fn(u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False,
                     return_last_state=False):
    """if return_last_state is True, returns (out, last_state)
    last_state has shape (batch, dim, dstate). Note that the gradient of the last state is
    not considered in the backward pass.
    """
    return selective_scan_ref(u, delta, A, B, C, D, z, delta_bias, delta_softplus, return_last_state)
    
def mamba_inner_fn(
    xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
    out_proj_weight, out_proj_bias,
    A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
    C_proj_bias=None, delta_softplus=True
):
    return mamba_inner_ref(xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
                              out_proj_weight, out_proj_bias,
                              A, B, C, D, delta_bias, B_proj_bias, C_proj_bias, delta_softplus)

7. 卸载causal_conv1d和mamba-ssm

上述对你的电脑来说,可能也不会成功,……方便卸载:)再试试别的办法吧~~

pip uninstall causal_conv1d
pip uninstall mamba-ssm

8. 下载所需文件

不想去官网下载的,可以直接网盘下载我已经修改好setup.py文件所有文件。
链接:https://pan.baidu.com/s/1NKoqUPIGd_UexBdDFZxljQ
提取码:3asf

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/897027.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

软件质量管理体系,软件评审资料,资质认证资料,安全建设,数据安全及项目管理全套资料(原件参考)

软件项目质量管理体系是指一套系统化的管理方法、流程、工具和文档,旨在确保软件项目从需求分析、设计、开发、测试到部署和维护的整个生命周期中,都能达到预定的质量标准和客户期望。该体系通过明确的角色和责任、标准化的工作流程、有效的质量控制和持…

MySQL(python开发)——(3)表数据的基本操作,增删改查

MySQL(python开发)——(1)数据库概述及其MySQL介绍 MySQL(python开发)——(2)数据库基本操作及数据类型 MySQL—— 表数据基本操作 一、表中插入(insert)数据——增 insert into 表名 values (值1&#…

springboot2.0x 和springboot 1.0 整合redis 使用自定义CacheManager 问题

问题描述: 在我们深入理解springboot2.0x的缓存机制的时候,发现在springboot1.0 和springboot2.0 中默认的序列化都是使用的jdk的 Serializer 实现这个接口,jdk自带的序列化方法,由此我们需要自己去创建自定义的RedisCacheManager…

解决springboot redisTemplate lua execute hash脚本 field有转义符的问题

问题:使用execute,是 result redisTemplate.execute(redisScript,Collections.singletonList(hashKey), // KEYSargs.toArray()); // ARGV会存在field有转义符 发现这个方法是直接调用下图的方法 使用的序列化的方式是 template.getValueSerializer(…

详解23种设计模式——第一部分:概述+创建型模式

目录 1. 概述 2. 创建型模式 2.1 简单(静态)工厂模式 2.1.1 介绍 2.1.2 实现 2.2 工厂模式 2.3 抽象工厂模式 2.4 单例模式 2.4.1 饿汉模式 2.4.2 懒汉模式 2.4.3 线程安全的懒汉式 2.4.4 DCL单例 - 高性能的懒汉式 2.5 建造者模式 2.6 原…

【进阶OpenCV】 (19)-- Dlib库 --人脸表情识别

文章目录 表情识别一、原理二、代码实现1. 摄像头前预处理2. 计算嘴唇变化3. 绘制嘴唇轮廓4. 显示结果5. 完整代码展示 总结 表情识别 目标:识别人物的喜悦状态。 一、原理 我们在对一张人脸图片进行关键点定位后,得到每个关键点的位置: 比…

go压缩的使用

基础:使用go创建一个zip func base(path string) {// 创建 zip 文件zipFile, err : os.Create("test.zip")if err ! nil {panic(err)}defer zipFile.Close()// 创建一个新的 *Writer 对象zipWriter : zip.NewWriter(zipFile)defer zipWriter.Close()// 创…

【Linux】————动静态库

作者主页: 作者主页 本篇博客专栏:Linux 创作时间 :2024年10月22日 一.库的定义 什么是库,在windows平台和linux平台下都大量存在着库。 本质上来说库是一种可执行代码的二进制形式,可以被操作系统载…

渗透实战 JS文件怎么利用

1.前言 关于JS在渗透测试中的关键作用,想必不用过多强调,在互联网上也有许多从JS中找到敏感信息从而拿下关键系统的案例。大部分师傅喜欢使用findsomething之类的浏览器插件,也有使用诸如Unexpected.information以及APIFinder之类的Burp插件…

ES6 Promise的用法

学习链接:ES6 Promise的用法,ES7 async/await异步处理同步化,异步处理进化史_哔哩哔哩_bilibili 一、同步与异步区别 1.JavaScript代码是单线程的程序,即通过一行一行代码顺序执行,即同步概念。 2.若处理一些简短、…

算法魅力-双指针的实战

目录 1.双指针的介绍 1. 左右指针(对撞指针) 2. 快慢指针 2.题目练习讲解 2.1 移动零 算法思路 代码展示 画图效果效果 2.2 复写零 算法思路 代码展示 2.3 快乐数 算法思路 代码展示 2.4 盛最多水的容器 算法思路 代码展示 结束语 1.双指针的…

宝塔PHP8.1安装fileinfo拓展失败解决办法

在宝塔面板中安装PHP8.1后,安装fileinfo扩展一直安装不上,查看日志有报错,于是手动来安装也报错。 宝塔报错: 手动命令行编译安装同,也有报错 cd /www/server/php/81/src/ext/fileinfo/ make distclean ./configure …

【用74ls194实现1000-0100-0010-0001转换】2022-5-13

试用74194附加门电路设计1011011010序列发生器,并用示波器观察。要求:(1)写出设计过程;(2)画出电路图。 2、用multisim软件仿真实现上述序列信号发生器,CP频率为1KHz,用示…

【HarmonyOS】应用实现APP国际化多语言切换

【HarmonyOS】应用实现APP国际化多语言切换 前言 在鸿蒙中应用国际化处理,与Android和IOS基本一致,都是通过JSON配置不同的语言文本内容。在UI展示时,使用JSON配置的字段key进行调用,系统选择对应语言文本内容。 跟随系统多语言…

【scene_manager】与 MoveIt 机器人的规划场景进行交互

scene_manager Scene Manager包是由 Robotnik 创建的 ROS 包,旨在帮助构建和与 MoveIt 机器人的规划场景进行交互。 背景信息 MoveIt 规划场景 是一个用于存储机器人周围世界的表示(外部碰撞)以及机器人自身状态(内部碰撞和当…

rollup.js 插件实现原理与自定义

Rollup.js 是一个JavaScript模块打包器,它主要用于将小块代码编译成大块复杂的库或应用程序。相较于Webpack,Rollup更专注于代码的ES模块转换和优化,特别适合构建库或者那些对代码体积、执行效率有严格要求的应用。Rollup的核心特性之一就是它…

NETSH端口转发

NETSH介绍 netsh是windows系统自带命令行程序,攻击者无需上传第三方工具即可利用netsh程序可进行端口转 发操作,可将内网中其他服务器的端口转发至本地访问运行这个工具需要管理员的权限 实验场景 现在有如下的网络,电脑A是攻击机器&#x…

衡石分析平台系统分析人员手册-仪表盘控件概述

控件​ 控件是仪表盘的基本组成单位。控件种类很多,有展示分析数据的图表类类控件,有展示图片、文字的展示类控件,还有可导出数据、刷新数据、过滤数据等功能类控件。一个完整的仪表盘由多种不同功能的控件构成。 控件类型​ 根据控件是否展…

10月18日笔记(基于系统服务的权限提升)

系统内核漏洞提权 当目标系统存在该漏洞且没有更新安全补丁时,利用已知的系统内核漏洞进行提权,测试人员往往可以获得系统级别的访问权限。 查找系统潜在漏洞 手动寻找可用漏洞 在目标主机上执行以下命令,查看已安装的系统补丁。 system…

详解Java之Spring MVC篇一

目录 Spring MVC 官方介绍 MVC RequestMapping 传递参数 无参数 单个参数 针对String类型 针对Integer类型 针对int类型 针对自定义类型 多个参数 参数重命名 参数强制一致 参数不强制一致 传递数组 ​编辑传递List ​编辑 传递JSON ​编辑 从路径中获取参…