【TFR-Net】基于transformer重建网络


abstract:

提高对数据缺失的鲁棒性已经成为多模态情感分析(MSA)的核心挑战之一,MSA旨在从语言、视觉和声学信号中判断说话者的情感。在目前的研究中,针对不完全模态特征的MSA,提出了基于平移的方法和张量正则化方法。然而,这两种方法都无法解决非对齐序列中缺失的随机模态特征。为了提高模型对非对齐模态序列随机缺失的鲁棒性,提出了一种基于变压器的特征重构网络(TFR-Net)。

  • 首先,采用基于模态内和模态间注意的提取器学习模态序列中每个元素的鲁棒表示。
  • 然后,提出一个重构模块来生成缺失的模态特征。
  • 在生成序列和完整序列之间的SmoothL1Loss监督下,TFR-Net有望学习缺失特征对应的语义级特征。

在两个公共基准数据集上的大量实验表明,我们的模型在各种缺失模态组合和不同缺失程度的数据缺失方面取得了良好的效果。

intro:


随着用户生成的在线内容的丰富,MSA最近成为自然语言处理(NLP)中的一个活跃领域[16,20]。利用人工对齐的完整信息,包括文本语言、音频和视觉,前人的工作在MSA任务上取得了显著的进步。然而,用户生成的视频通常并不完美。首先,不同模式的受体可能有不同的接收频率,这导致了不对齐的性质。其次,许多不可避免的因素,如用户生成视频中的损坏的噪声或传感器故障,都可能导致模态特征提取器失效。

在上述情况下,需要一个可以处理随机模态特征缺失(RMFM)的模型。因此,在MSA中构建能够处理RMFM的模型仍然是一个开放的研究。基于RMFM的MSA的核心挑战在于不完全模态序列的稀疏语义,导致难以提取鲁棒模态表示。据我们所知,目前的工作并没有致力于重建情态序列中缺失的语义。相反,他们直接使用缺失惩罚的不完整模态序列来学习关节融合表示。然而,由于缺乏在语义信息缺失的序列中,改进是有限的。

编码器-解码器框架最早是作为神经机器翻译(NMT)中的序列对序列方法提出的[5],并很快适应了许多多模态翻译任务,如图像/视频字幕[18,25]和视觉问答[4]。在目前的研究中,该框架也被用于多模态表示学习,因为它能够从源序列和目标序列中生成捕获共享语义的隐藏表示[9]。在它的激励下,我们形成了一个编码器-解码器框架来重现缺失元素的语义

具体来说,编码器不完整的模态序列为输入,通过模态间和跨模态注意机制提取模态序列的语义。所提出的解码器试图将丰富的序列表示投影到输入空间中。通过最小化生成序列与完整模态序列之间的重构损失,该模型学习从不完整模态序列中提取语义。此外,我们利用后期融合策略对丰富的情态序列进行融合并进行情感预测。

简而言之,我们的工作贡献可以总结如下:

  • 据我们所知,本文首次针对非对齐模态序列中随机缺失的多模态情感分析任务,提出了一个完整合理的评价模型来评价多模态不完整数据的鲁棒性。
  • 提出了一种基于编码器-解码器框架的模态特征提取方法,用于生成语义缺失部分的序列特征。
  • 该模型在基准多模态情感分类数据集的实验中表现良好。从实验结果可以看出,TFR-Net是一个通用的框架,可以灵活地处理各种形式和不同程度的不对齐特征的不完全性。

related work:

在这一部分中,我们主要介绍了本文的相关工作。

首先对传统的非对齐MSA模型和考虑了模态缺失问题的MSA模型进行了说明。接下来,我们将简要介绍转换器和Bert语言模型,通过它们,我们提出的模型可以更有效。最后,介绍了处理各种不完全数据的生成模型。

MSA的目的是从视频、音频和文本中预测人们的情绪。MFN[30]和EF-LSTM[27]等模型可以处理对齐的多模态数据,这意味着音频和视觉的帧与文本模态中的单词具有明确的对应关系。为了处理更实际的场景,MSA模型正逐步扩展到非对齐多模态数据输入领域。TFN[29]和LMF[13]使用基于张量的方法获得话语的联合表示。MulT[22]利用跨模态变压器处理未对齐的多模态数据。MISA[10]学习每个模态的模态不变和特定表示,以改进融合过程。然而,在这些模型中,不存在对缺失的多模态数据的额外处理。

为了解决MSA中的数据缺失问题,MSA中已经有了一些研究工作。MCTN[17]使用模态之间的循环转换,仅通过一个模态生成其他模态。因此,鲁棒联合表示可以被学习。T2FN[12]通过监督张量秩正则化下表征的学习,在缺失任务中获得了更好的性能。然而,T2FN需要一致的输入。我们提出的模型可以作为更接近真实情况的更广泛应用场景的MSA模型。当没有任何模态缺失时,所提出的模型与其他传统的MSA模型一样工作。

Transformer[23]和BERT略过

生成网络通过训练数据学习样本和标签的联合概率分布。因此,训练后的模型可以生成符合样本分布的新数据。

典型的生成网络包括生成对抗网络(GAN)[8]和变分自编码器[11]。对于模态缺失问题,一组方法[2,3,19,26]利用GAN或其变体,包括cGAN[15]和cycleGAN[33]来生成缺失模态数据。CRA[21]采用层叠去噪自编码器[24]改编的级联残差自编码器来计算残差并重建损坏的多模态数据序列。

然而,基于生成模型的方法通常应用范围很窄,因为一个生成器只能从另一个特定模态生成一个特定模态,因此只遗漏了样本的一个特定模态。我们提出的模型也不同于旨在为下游工作输入完整样本的自编码器。与缺失数据的生成相比,更好的特征提取方法在MSA任务中也很重要。我们提出的模型就像一个去噪的自编码器,其结构类似于CRA,但解码器执行监督有效表征学习的任务,而最终目的仍然是情绪预测。

method:

在本节中,我们描述了通过模态重建来学习针对缺失模态的鲁棒表示的方法。TFR-Net可分为三个子模块:模态特征提取模块(第3.2节)、模态重构模块(第3.3节)和融合模块(第3.4节)。总体框架如图2所示。

 

任务设置:

我们的目标是通过利用不完整的多模态信号来判断视频中的情绪。对于每个视频剪辑,涉及文本(t),音频(a),视觉(v)中随机缺失的三个低级特征序列。这些表示为,所提出的模型以𝑈‘𝑡,𝑈’𝑎,𝑈'𝑣作为输入,输出一个情感强度结果。在训练阶段,使用完整的情态特征和特征缺失位置来指导表征学习。

模态特征提取:

模态特征提取模块首先用一维卷积层对不完整模态序列进行处理,保证输入序列的每个元素都知道它的邻居元素。

其中是模式𝑡,𝑎,𝑣的卷积核的大小,d是一个公共维度。然后,我们用位置嵌入(PE)增强卷积序列,然后使用模态内和模态间变压器来捕获输入序列的每个时间步的模态动态。利用注意机制从另一个序列𝐻𝑗中提取一个序列𝐻i的信息,对这些序列使用变压器编码器结构。查询、键和值是转换器编码器的输入。查询的来源是𝐻i,而键和值的来源应该是𝐻𝑗。因此,变压器编码器可以表示为transformer(𝐻i,𝐻𝑗,𝐻𝑗)。

 

最后,我们将获得的所有潜在特征与所有模内和模间变压器连接起来作为增强的序列特征输出

 

 参数量爆炸。。

 其中𝑚∈{𝑡,𝑎,𝑣}和𝑛1,𝑛2表示除𝑚之外的另外两种模态。期望增强序列能够利用模态之间的互补性提取缺失模态特征的有效表示。此外,这种包含跨模态相互作用的增强模态序列可以被视为模型级融合结果。

 模态重建模块:

基于从提取的模态序列中重建完整的模态序列可以引导提取器模块学习缺失部分的语义,我们提出了一个模态重构模块。对于每种模态,首先在特征维度上建立自注意机制,捕捉提取的特征之间的相互作用。

其中𝑚∈{𝑡,𝑎,𝑣}和𝐻∗𝑚被重新降级为转换后的序列特征。然后进行线性变换,将提取的特征映射到输入空间。

其中𝑚∈{𝑡,𝑎,𝑣},𝑊𝑚,𝑏𝑚为线性层的参数

对于监督,利用原始和生成器之间在缺失元素上的SmoothL1Loss(·)作为生成损失L𝑚𝑔来利用缺失重建的效果。

其中𝑚∈{𝑡,𝑎,𝑣},𝑀'是缺失的掩码,表示输入模态序列中缺失的位置。

融合模块:

在重建损失的指导下,利用互补模态信息增强不完整模态序列,将它们融合成一个联合向量进行情感预测。提出的CNN门编码器分别对增强模态序列𝐻𝑚进行编码。

CNN Gate Encoder:

首先对提取的模态序列进行双向GRU层处理,然后是𝑡𝑎𝑛h激活函数进行处理,得到更新后的表示

卷积门组件被设计为进一步编码

具体来说,一维卷积网络(CNN)在输入上滑动一个窗口大小为𝑘的卷积核,以获得序列中每个元素的标量值。填充策略用于确保𝐻"𝑚和𝑔具有相同的序列长度:

 

在𝑚∈{𝑡、𝑎𝑣},和𝐶𝑜𝑛𝑣1𝑑(·)是一种一维卷积操作。𝑔被视为缩放表示的门,过滤掉话语中不相关的上下文信息:

 

这里⊗表示元素相关产物。

此外,还将表示和最初提取的序列连接起来。然后使用全连接层去控制最终的字级表示维:

最后,利用最大池化操作来关注话语中具有更显著影响的特征,最终的情态表示𝑈∗𝑚定义如下:

其中,𝑚表示模态的隐藏维度

将三种情态表示的连接作为融合结果,并将其输入到一个简单的分类器中,从而对情感强度进行最终预测。

其中BN是BatchNorm操作,而LeakyReLu被用作激活

 模型训练:

我们以L1Loss作为情绪强度预测的基本优化目标。随着重建损失,模型的整体学习通过最小化:

其中,是决定每个模态重构损失对总损失贡献的权重,

这些分量损失中的每一个都负责每个模态子空间中的表示学习。

experiment:

数据集用的SIMS和MOSI

特征提取:

文本用Bert提取出,dt=768

对于音频特征提取,MOSI数据集使用COVAREP声学框架[6],SIMS数据集使用LibROSA[14]。特征维度𝑑𝑎对于MOSI是5,对于SIMS数据集是33。

MOSI使用Facet1提取面部表情特征。对于SIMS,首先使用MTCNN人脸检测算法[32]提取对齐后的人脸,然后使用MultiComp OpenFace2.0工具包提取人脸特征[1]。特征尺寸𝑑𝑣对于MOSI是20,对于SIMS是709。

baseline:

在三种基线方法上进行了实验,并对我们提出的模型进行了验证。所有方法都可以在未对齐的多模态数据集上工作。

TFN。张量融合网络(Tensor Fusion Network, TFN)[29]利用张量融合层,利用笛卡尔积形成特征向量。因此,三种模式的信息可以融合来预测情绪。

MulT。多模态转换器(Multimodal transformer, MulT)[22]使用一种跨模态注意机制来捕捉不同模态之间的关系。这些交互可以在未对齐的多模态数据集上获得更好的性能。

MISA。该方法通过将样本的每个模态投影到两个子空间中来学习模态不变和特定表示[10]。这种有效的特征提取方法提高了模型在MSA任务中的性能。

experimental setting:

建立了具有缺失值的多模态数据集。采用序列中缺失值的随机替换来模拟不完全多模态数据的场景。文本模态数据的缺失值为[UNK],其他模态数据的缺失值为零填充向量。每种模态的缺失比例需要提前指定,并且训练、验证和测试数据集之间的缺失比例相同。

对于我们提出的模型,超参数包括卷积核大小、注意力缺失、变压器头、融合特征向量的维度以及三种模式的生成损失权重。这些参数针对有效集上的不同数据集进行了很好的调优。使用Adam优化器进行学习,MOSI数据集的学习率为0.002,SIMS数据集的学习率为0.001。

在MOSI和SIMS数据集中使用三种不同的随机种子进行实验。

结果中评价指标为3项的平均值。

评价指标:

为了与基线进行综合比较,记录MOSI和SIMS测试集上的二元分类准确率(Acc-2)、五类分类准确率(Acc-5)、平均绝对误差(MAE)和Pearson相关系数(Corr)关于缺失率增加的情况。根据最近的研究[10,22],二元分类精度(Acc-2)是通过更准确的负/正类公式来计算的,其中对< 0和> 0的情绪得分分别分配负和正类。此外,我们计算了每个度量序列的指标下面积折线图(AUILC)值,以定量评估处理不完全模态输入的整体性能。

AUILC值定义如下:

给定模型评价结果序列𝑋={𝑥0,𝑥1,···,xt}缺失率{𝑟0,𝑟1,···,𝑟𝑡},则指标下面积折线图(AUILC)定义为:

对于上述所有指标,更高的值表示更强的性能,除了MAE,更低的值表示更强的性能。

 result:

本节对我们的实验结果进行了详细的分析和讨论.

不同缺失率下的模型稳健性

我们首先研究了随机模态缺失率增加时TFR-Net的鲁棒性。在训练和测试期间,在每个模式中引入相同水平的缺失率,missing_rate∈{0.0,0.1,···,1.0}作为参数。下面的实验采用随机丢弃策略,即每个条目独立丢弃,概率为𝑝∈𝑚i𝑠𝑠𝑛𝑔_𝑟𝑎𝑡𝑒。

详细的缺失构造方法已在第expertiment中描述。

问题1:与现有的多模态情感分析方法相比,TFR-Net的表现如何?

首先给出了模型性能曲线,直观地评价了模型的有效性。如图3所示,在MOSI数据集上,TFR-Net在所有缺失率𝑝∈{0.0,0.1···,1.0}的大多数评估指标上都超过了基线方法。而在SIMS数据集上,如图4所示,TFR-Net在低缺失率(𝑝∈{0.0,0.1,···,0.5})下的性能更好。在缺失率较高的情况下(𝑝∈{0.6,0.7,···,1.0}),所有模型表现相似,最终收敛到一个稳定值。我们将这种现象归因于数据集中的标签偏差。根据表1中每个数据集的正样本和负样本的统计,我们发现SIMS数据集存在明显的标签偏差。由于标签偏差,用有效集中的平均情绪强度进行预测的平凡模型表现得足够好。

随着缺失率的增加,模型难以击败缺乏信息的训练数据模型,最终退化为琐碎的模型。

除折线图外,还计算了AUILC值,以定量评价所提出的模型。我们在MOSI数据集上记录整个区间𝑝∈{0.0,0.1···,1.0}的AUILC值,在SIMS数据集上记录部分区间𝑝∈{0.0,0.1···,0.5}的AUILC值作为较高𝑝的不可区分结果。从表2中,定量结果进一步验证了TFR-Net在两个数据集上对各种模态缺失率的鲁棒性。

基于MOSI和SIMS数据集的AUILC结果与基线模型的比较。MOSI数据集上的结果用全缺失率区间𝑝∈{0.0,0.1,···,1.0}计算,SIMS数据集上的结果用部分缺失率区间𝑝∈{0.0,0.1,···,0.5}计算。

 

模态缺失组合的模型鲁棒性

我们的下一个实验侧重于TFR-Net对不同模态缺失组合的鲁棒性。我们使用TFR-Net在完全丢弃不同模态组合的情况下(missing_rate 𝑝= 1.0)对MOSI数据集进行了实验。

问题2:TFR-Net在测试过程中对不同模态缺失组合的表现如何?

实验结果收集见表3。对于单模态输入实验,我们看到TFR-Net在保持文本模态时保持了相当的性能,而音频输入和视觉输入的TFR-Net则失败了。对于双模态输入,文本模态和视觉模态表现最好,甚至比三模态输入获得更好的MAE和Corr。根据以上结果,我们可以总结出,文本情态包含更多的语义,在缺失语义重建和情感预测中发挥着重要作用。而在输入音频和视觉特征的情况下,模型很难重构文本模态中存在的语义。

消融实验:

最后,在MOSI数据集上进行了烧蚀实验。

我们分别测试了模态内注意模块、生成模块、CNN门模块的贡献。无模态内注意力的模型用w/o a表示,不含生成模块的模型用w/o g表示,不含CNN栅极模块的模型用w/o c表示。从表4可以看出,去掉TFR-Net中的任意一个模块都会导致模型性能下降。其中,去掉模态内注意模块对模型性能影响最大,导致二值分类准确率AUILC值下降2%。而作为附加监督的生成模块对模型性能的影响相对较小。为了进一步分析生成模块的有效性,我们说明了在训练和验证期间生成损失和预测损失的趋势。

图5显示了生成的三种模态的SmoothL1Loss的趋势和情绪预测的回归损失。在MOSI数据集上跟踪TFR-Net训练过程中的损失值,三种模式的缺失率分别为(0.3,0.3,0.3)。如图5所示,在整个训练过程中,训练集和验证集的损失值都呈下降趋势。生成损失和预测损失可以收敛在一起。这证明了该模型在学习能够重构完整多模态数据特征的表征的同时,可以获得更好的情感分析结果。

上述消融研究的结果验证了所提出的模块在提高模型对模态缺失的鲁棒性方面的有效性。

在本文中,我们强调提高模型对MSA任务模态不完备性的鲁棒性,并设计了基于变压器的特征重构网络(TFR-Net),这是一种通用框架,可以灵活地处理各种模态组合和不同程度的不连续特征的不完备性。TFR-Net的核心是特征重构模块,该模块指导提取器获取缺失模态特征的语义。在两个基准MSA数据集上的实验结果表明,我们的模型在不同模式和不同程度的不对齐特征不完备情况下都取得了良好的结果。

我们还发现当前的模型性能受到标签偏差问题的限制。在未来的工作中,我们将引入数据增强方法来处理数据偏差,并通过实时用户生成的视频输入进一步创新我们的模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/896774.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Unity-Editor扩展,引擎管理AudioClip,音乐音效快捷播放功能

目录 选择一个Audio 音频文件即会 关键在于三个快捷模式 播放&#xff0c; 自动播放 循环播放 根本不需要Editor扩展开发 没找到虚幻引擎的audio 的管理是怎么样的 参考&#xff1a; 本来&#xff0c;觉得没有快捷方式&#xff0c;播放很不爽 想自定义搞一个&#xff…

全面了解 NGINX 的负载均衡算法

NGINX 提供多种负载均衡方法&#xff0c;以应对不同的流量分发需求。常用的算法包括&#xff1a;最少连接、最短时间、通用哈希、随机算法和 IP 哈希。这些负载均衡算法都通过独立指令来定义&#xff0c;每种算法都有其独特的应用场景。 以下负载均衡方法&#xff08;IP 哈希除…

aws 把vpc残留删除干净

最近忘了把vpc 删干净导致又被收了冤大头钱 在删除vpc 的收发现又eni在使用&#xff0c;但是忘了是哪个资源在占用 先用命令行把占用的资源找出来停掉 使用 AWS 命令行界面&#xff08;CLI&#xff09;来查看 VPC 的使用情况 列出子网&#xff1a; aws ec2 describe-subnets …

【Java】常用方法合集

以 DemoVo 为实体 import lombok.Data; import com.alibaba.excel.annotation.ExcelProperty; import com.alibaba.excel.annotation.ExcelIgnoreUnannotated;Data ExcelIgnoreUnannotated public class ExportPromoteUnitResult {private String id;ExcelProperty(value &qu…

数据结构6——树与二叉树

在本专栏的前五篇中&#xff0c;我们学习了顺序表、链表、栈和队列&#xff0c;他们本质上都是线性表。有线性表就存在非线性表&#xff0c;现在我们就来学习一下结构更复杂的非线性表——树。 1. 树的概念与结构 1.1 树的概念 树是一种非线性的数据结构&#xff0c;它是由n&…

Go语言Gin框架的常规配置和查询数据返回json示例

文章目录 路由文件分组查询数据库并返回jsonservice层controller路由运行效果 启动多个服务 在 上一篇文章《使用Go语言的gorm框架查询数据库并分页导出到Excel实例》 中主要给大家分享了较多数据的时候如何使用go分页导出多个Excel文件并合并的实现方案&#xff0c;这一篇文章…

Linux之远程连接服务器

远程连接服务器的类型 文字接口 明文传输&#xff1a;Telnet 23、RSH等&#xff0c;目前非常少用&#xff1b; 加密传输&#xff1a;SSH为主&#xff0c;已经取代明文传输 ssh提供两个服务器功能&#xff1a;1.类似于telnet&#xff1b;2.类似于ftp的sftp-serve…

特斯拉自动驾驶出租车计划变成泡影?联想与Meta合作,推出面向PC的个人AI智能体AI Now|AI日报

文章推荐 Swarms Corporation创始人Kye Gomez实锤OpenAI多智能体Swarm抄袭其成果&#xff01;&#xff5c;AI日报 今日热点 中国海油“海能”人工智能模型正式发布 近日&#xff0c;由中国海油与中国电信、科大讯飞等企业合作打造“海能”人工智能模型正式推出。 中国海油“…

Centos7搭建minio对象存储服务器

Centos7搭建minio对象存储服务器 安装二进制程序配置服务文件 安装二进制程序 参考&#xff1a;https://segmentfault.com/q/1010000042181876 minio中国版&#xff1a;https://www.minio.org.cn/download.shtml#/linux # 下载二进制程序 wget https://dl.min.io/server/min…

鸿蒙--应用首次启动

最终效果 前言 基于自定义弹框、首选项和页面路由实现一个模拟应用首次启动的案例。需要完成以下功能: 实现四个页面,启动页、隐私协议页、广告页和应用首页。实现自定义隐私协议弹窗,点击协议可查看隐私协议具体内容。页面间的路由跳转。相关概念 首选项:首选项为应用提供…

软件工程:图书管理系统甘特图

1 实验目的 熟悉GanttProject 软件环境&#xff0c;能够使用GanttProject绘制甘特图,进行项目管理与规划。 2 实验内容 为小型图书管理系统项目的实施计划绘制甘特图。 小型图书管理系统项目包含登录、浏览、管理读者、管理图书资料、管理书目、登记借书、登记还书、预定图书、…

Snort浅析

Snort简介 Snort是免费开源的IDS/IPS&#xff08;入侵检测/防御系统&#xff09;系统&#xff0c;于1998年开发&#xff0c;旨在检测和响应网络中的可疑活动。包含流量/协议分析、内容匹配等功能&#xff0c;并可用预定义规则检测和防止各种攻击。官方网站&#xff1a;https:/…

出口摩洛哥提示 | 燃气器具和设备,2024年12月20日起需要标识Cmim Mark

Cmim Mark 为了证明产品符合摩洛哥的技术法规及标准&#xff0c;指导消费者正确选购&#xff0c;并协助政府有效管理市场&#xff0c;所有依据第24-09号法律规定的产品&#xff0c;必须加贴清晰的Cmim Mark&#xff0c;方可顺利进入摩洛哥市场。 根据摩洛哥官方公报发布的关于…

K歌与露营最搭配,AISON爱畅K歌音箱让露营更有趣

据市场调研数据显示&#xff0c;中国露营经济核心市场规模和带动市场规模均呈现逐年上升趋势&#xff0c;预计到2025年&#xff0c;中国露营经济核心市场规模将达到2483.2亿元。同时&#xff0c;《2024小红书搜索推广白皮书》显示&#xff0c;城市出行、音乐、旅游和户外等娱乐…

redis的配置文件redis.conf解析

我的后端学习大纲 我的Redis学习大纲 1.1.Redis的配置文件&#xff1a; 1.Redis的配置文件名称是&#xff1a;redis.conf 2.在vim这个配置文件的时候&#xff0c;默认是不显示行号的&#xff0c;可以编辑下面这个文件&#xff0c;末尾加上set nu&#xff0c;就会显示行号: 1.…

STM32应用详解(5)USART串口初始化

文章目录 一、USART初始化二、代码说明1.原理图2.main函数3.USART串口初始化函数4.代码整体结构 三、USART串口初始化总结 一、USART初始化 所谓的对USART进行初始化&#xff0c;就是对USART固件库函数的调用&#xff0c;来完成串口(USART)的设置&#xff0c;比如设置波特率、…

Docker 搭建mysql

拉取mysql镜像 docker pull mysql # 拉取镜像 [rooteason ~]# docker pull mysql Using default tag: latest latest: Pulling from library/mysql 72a69066d2fe: Pull complete 93619dbc5b36: Pull complete 99da31dd6142: Pull complete 626033c43d70: Pull complete 37d…

开放式耳机什么品牌最好?热门开放式蓝牙耳机推荐!

如今&#xff0c;开放式耳机如雨后春笋般涌现&#xff0c;丰富的产品类型确实让不少消费者陷入了选择的困境。很多人不知道哪个牌子的耳机好用&#xff0c;不过别担心&#xff0c;我精心搜罗了一批兼具时尚外观与卓越性能的开放式耳机。作为有着多年音频设备研究经验的专业人士…

sql server 行转列及列转行

图1 图2 1.行转列 &#xff08;图1->图2&#xff09; 1.方法一 (数据库通用&#xff09;&#xff0c;使用max 加case when 函数 -- 行转列 图1->图2 SELECT name,MAX(CASE WHEN subject语文 THEN score ELSE 0 END) AS "语文",MAX(CASE WHEN subject数学 …

OpenAI GPT-o1实现方案记录与梳理

本篇文章用于记录从各处收集到的o1复现方案的推测以及介绍 目录 Journey Learning - 上海交通大学NYUMBZUAIGAIRCore IdeaKey QuestionsKey TechnologiesTrainingInference A Tutorial on LLM Reasoning: Relevant methods behind ChatGPT o1 - UCL汪军教授Core Idea先导自回归…