【轴承故障诊断】用于轴承故障诊断的集中时频分析研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

2.1 算例1

 2.2 算例2

2.3 算例3 

2.4 算例4

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

在工业旋转机械中,瞬态信号通常对应于初级元件(例如轴承或齿轮)的故障。然而,面对实际工程的复杂性和多样性,提取瞬态信号是一项极具挑战性的任务。本文提出了一种称为瞬态提取变换的时频分析方法,该方法可以有效地表征和提取故障信号中的瞬态分量。该方法基于短时傅里叶变换,不需要扩展参数或先验信息。采用Rennyi熵和峰度等量化指标将所提方法的性能与其他经典和高级方法进行比较。比较表明,所提方法可以提供能量集中度更高的时频表示,并且可以通过明显更大的峰度提取瞬态分量。数值和实验信号验证了该方法的有效性。

在旋转机械故障诊断领域,广泛应用信号处理方法查找与机械故障密切相关的特征[1],[2]。在记录的振动和声音信号中,故障通常显示短时间内出现的瞬态特征[3]。考虑到不同的故障信号占据不同的频段,联合时频(TF)分析(TFA)是表征具有非平稳TF特征的瞬态故障的有效工具[4]。尽管许多研究报告了TFA方法在故障诊断中的直接应用,但经典TFA方法的固有缺点从未得到有效解决。线性TFA方法,例如短时傅里叶变换(STFT)和小波变换(WT),用于计算信号与具有定位TF特征能力的基函数之间的内积。然而,由于没有可以在TF域中同时紧凑支持的TF基函数,线性TFA方法表征精确TF特征的能力很差。双线性TFA方法,如Wigner-Ville分布和Cohen类分布,用于计算局部信号相关性的傅里叶变换。然而,意外的交叉项极大地限制了双线性TFA方法的应用。经典TFA方法的这些缺点会降低诊断系统对一些不明显故障的敏感性,例如早期的弱故障和被强噪声包围的故障。为了增强TFA方法在复杂环境中检测故障的能力,在过去十年中已经提出并引入了一些先进的方法,例如经验模态分解(EMD)[5],光谱峰度(SK)方法[6],[7]和同步挤压变换(SST)[8]-[10]。

EMD 是一种数据驱动的方法,用于将一维信号分解为一系列固有模式函数 (IMF)。由于不同的IMF占用不同的频段,因此与原始信号相比,包含故障频带的IMF的瞬态特性可以大大增强。由于这种优越性,已经开发了许多基于EMD的故障诊断方法,并在[1]中找到全面的综述。虽然我们不能很好地理解这种方法的数学基础,但一些研究表明,在处理高斯噪声时,EMD表现为二元滤波器组。它表示在执行时间序列信号处理时,EMD 使用固定的二元滤波器组分解信号的因素。由于无法事先知道真实信号中故障分量的频带,因此分解结果是这样的,一些IMF可能包含预期的故障分量,或者一个故障分量可能分解成几个IMF,这通常称为模式混合。由于EMD的处理行为难以控制,有时基于EMD的故障诊断方法不可预测且不稳定。最近,建立了更先进的方法来改善EMD的性能,例如局部均值分解[11],集成EMD [12]和极点加权模态分解[13]。

SK方法是一种基于峰度指标提取最瞬态分量的技术。峰度是用于测量时间序列信号的时间色散的统计变量,也可用于检测故障信号中包含的瞬变。SK方法首先需要基于STFT或带通滤波器将一维信号扩展到二维TF平面,然后重建或选择与峰度最大的断层最相关的分量。得益于峰度指示器对瞬态故障的敏感性,SK方法显示了其在诊断机械故障方面的有效性[1],[2]。

SST方法作为线性TFA方法的后处理工具引入,并已应用于旋转机械的故障诊断[10]。SST旨在获得更清晰的TF表示,可以在高TF分辨率下表征故障。同时,可以从更清晰的TF结果中提取瞬态分量。为了从SST结果中提取信号,必须首先估计与瞬态分量对应的IF轨迹。然而,精确估计瞬态分量的IF具有挑战性,因为故障信号通常不能满足SST框架的弱时变要求。此外,意外的背景噪声会对SST结果造成严重干扰,这可能导致IF无法准确表征。为了进一步提高SST的性能,提出了一些先进的方法,例如解调SST [17],匹配SST [18],高阶SST [19]和同步提取变换(SET)[4]。

从上面的介绍中,我们可以看到,已经引入了许多先进的技术来从原始信号中提取暂态分量,这是提高诊断系统故障检测能力的本质问题。本文提出了一种新的TFA方法,可以精确表征TF平面上的瞬态特征,并在时域中提取。将所提方法与SK、EMD、SST及其改进版本等高级故障诊断方法进行了比较。本文的其余部分组织如下。第二部分详细介绍了我们提出的方法的理论。在第三部分中,使用仁义熵和峰度指标来说明不同TFA方法生成的TF结果的量化比较。实验验证在第四节和第五节中提供。结论见第六节。

📚2 运行结果

2.1 算例1

 

 2.2 算例2

 

 

 

2.3 算例3 

 

2.4 算例4

部分代码:

clear
load('vib_data2.mat')
fs = 12000; N = 1200;      % sampling frequency and points
time = (1:N)/fs;              % time sequence
fre = (fs/2)/(N/2):(fs/2)/(N/2):(fs/2);    % frequency sequence
fre2=fliplr(fre);

data=data(1:N);
[tfr Te]=TET_Y(data,100);
tfr2=WT2(data,fs,600);
Ts=SST_Y(data,100);

x1=0.079; x2=0.083;
y1=2.1;   y2=4;
%...................Fig. 12..................................

figure
suptitle('Fig. 12');
subplot(511)
plot(time,data);
axis([0 0.1 -1.25 1.25]);
%xlabel('Time / s');
ylabel('Amp / g');
rectangle('Position',[x1 -1.25 x2-x1 2.5],'EdgeColor','red','Linewidth',1);
axes('position',[0.92,0.815,0.07,0.15]); 
plot(time,data);
axis off;
xlim([x1,x2]);ylim([-1.25,2.5]);


subplot(512);
imagesc(time,fre/1000,abs(tfr));
%xlabel('Time / s');
ylabel('Fre / kHz');
axis xy
colormap jet
rectangle('Position',[x1 y1 x2-x1 y2-y1],'EdgeColor','red','Linewidth',1);
axes('position',[0.92,0.61,0.07,0.15]); 
imagesc(time,fre/1000,abs(tfr));
%xlabel('Time / s');
ylabel('Fre / kHz');
axis xy
colormap jet;
axis off;
%set(ha,'xlim',[x1 x2],'ylim',[y1 y2]);
xlim([x1,x2]);ylim([y1,y2]);

ha=subplot(513);
imagesc(time,fre/1000,abs(Te));
%xlabel('Time / s');
ylabel('Fre / kHz');
axis xy
colormap jet
rectangle('Position',[x1 y1 x2-x1 y2-y1],'EdgeColor','red','Linewidth',1);
axes('position',[0.92,0.44,0.07,0.15]); 
imagesc(time,fre/1000,abs(Te));
%xlabel('Time / s');
ylabel('Fre / kHz');
axis xy
colormap jet;
axis off;
%set(ha,'xlim',[x1 x2],'ylim',[y1 y2]);
xlim([x1,x2]);ylim([y1,y2]);

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]G. Yu, "A Concentrated Time–Frequency Analysis Tool for Bearing Fault Diagnosis," in IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 2, pp. 371-381, Feb. 2020, doi: 10.1109/TIM.2019.2901514.

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/89468.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Git分支操作---讲解二】

Git分支操作---讲解二 查看分支创建分支切换分支修改分支切换分支合并分支合并分支【冲突】(只会修改主分支不会修改其他分支)什么时候会有冲突? 查看分支 创建分支 切换分支 修改分支 切换分支 合并分支 合并分支【冲突】(只会修改主分支不会修改其他分支) 什么时…

【Flutter】Flutter 使用 device_info_plus 获取设备的制造商、型号等信息

【Flutter】Flutter 使用 device_info_plus 获取设备的制造商、型号等信息 文章目录 一、前言二、安装和基本使用三、实际业务中的用法四、完整示例五、总结 一、前言 在这篇博客中,我将为你介绍一个非常实用的 Flutter 插件:device_info_plus。这个插件…

Docker的Cgroup资源限制

Docker通过Cgroup来控制容器使用的资源配额,包括 CPU、内存、磁盘三大方面,基本覆盖了常见的资源配颡和使用量控制。 Cgoup 是CotrolGroups 的缩写,是Linux 内核提供的一种可以限制、记录、隔高进程组所使用的物理资源(如CPU、内存…

天眼查接口 查询企业信息API 企查查接口

item_get-获得tyc详情 tyc.item_get 公共参数 请求地址: https://api-gw.cn/tyc/item_get 名称类型必须描述keyString是调用key(必须以GET方式拼接在URL中)secretString是调用密钥api_nameString是API接口名称(包括在请求地址中&#xff0…

连锁餐饮行业的运维困局,向日葵远程控制提供“标准答案”

企业数字化转型的应用落地,在连锁餐饮行业是非常容易被顾客所感知到的,最典型的例子就是各种自助点餐设备。 往往在这些自助点餐设备的背后,还拥有一个覆盖进销存管理、供应链、客户反馈、巡店管理、视频监控等方面的完善的数字化系统&#…

vue直接使用高德api

第一步&#xff1a;在index.html 引入 <script src"https://webapi.amap.com/maps?v2.0&key你的key"></script>第二步&#xff1a;在你需要地图的时候 放入 <template><div style"width: 200px; height: 200px"><div id&q…

2023年高教社杯数学建模思路 - 案例:ID3-决策树分类算法

文章目录 0 赛题思路1 算法介绍2 FP树表示法3 构建FP树4 实现代码 建模资料 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 算法介绍 FP-Tree算法全称是FrequentPattern Tree算法&#xff0c;就是频繁模…

MybatisPlus 项目中使用

大家好 , 我是苏麟 , 今天带来 MybatisPlus 的简单使用 . 官方网站 : MyBatis-Plus (baomidou.com) 开始使用 初步体验 引入依赖 <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version…

FMEA介绍以及在制造业中的应用

在现代制造业中&#xff0c;确保产品质量和流程稳定性是至关重要的任务。为了应对潜在的故障和风险&#xff0c;企业采用了多种方法和工具&#xff0c;其中之一便是故障模式和影响分析&#xff08;FMEA&#xff09;。FMEA是一种系统性、结构化的方法&#xff0c;用于识别潜在的…

【HarmonyOS北向开发】-01 HarmonyOS概述

飞书原文链接-【HarmonyOS北向开发】-01 HarmonyOS概述https://fvcs2dhq8qs.feishu.cn/docx/TDf2d2KMaoPSUUxnvg2cASDdnCe?fromfrom_copylink

OpenCV项目开发实战--基于Python/C++实现鼠标注释图像和轨迹栏来控制图像大小

鼠标指针是图形用户界面 (GUI) 中的关键组件。没有它,您就无法真正考虑与 GUI 进行交互。那么,让我们深入了解 OpenCV 中鼠标和轨迹栏的内置函数。我们将演示如何使用鼠标来注释图像,以及如何使用轨迹栏来控制图像的大小 我们将使用下图来演示 OpenCV 中鼠标指针和轨迹栏功能…

数据驱动工作效率提升的5个层次—以PreMaint设备数字化平台为例

在现代工业领域&#xff0c;数据分析已成为提升工作效率和优化生产的不可或缺的工具。从描述性分析到规范性分析&#xff0c;数据分析逐步揭示了设备运行和维护的深层信息&#xff0c;帮助企业更明智地做出决策。本文将以PreMaint设备数字化平台为例&#xff0c;探讨工业数据驱…

IDEA创建Mybatis格式XML文件

设置位置&#xff1a;File | Settings | Editor | File and Code Templates 选择Files&#xff0c;点击号 Name中输入xml模板名&#xff08;名称自行决定&#xff09;&#xff0c;后缀名extension输入xml&#xff08;固定&#xff09; 内容处输入Mybatis的xml文件模板内容&…

C++动态规划DP Dynamic Programming实现B3635 硬币问题B3636 文字工作

DP动态规划的基本手段及如何解决问题 1. 那带一个问题&#xff0c;只要解决几个对应的小一点规模的问题就能得到问题本身的解 2. 设计一张表格&#xff0c;每一个格子都是一个问题的解 3. 一步步完成这张表格&#xff0c;根据一个数据&#xff0c;往表格前面的数据查找 4. …

航空电子设备中的TSN通讯架构—直升机

前言 以太网正在迅速取代传统网络&#xff0c;成为航空电子设备和任务系统的核心高速网络。本文提出了以太网时间敏感网络(TSN)在航空电子设备上应用的技术优势问题。在实际应用中&#xff0c;TSN已成为一个具有丰富的机制和协议的工具箱&#xff0c;可满足与时间和可靠性相关…

数据分析案例-汽车客户信息数据可视化分析(文末送书)

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…

ESP32应用教程(1)— VL53L3CX距离传感器

文章目录 前言 1 产品概述 1.1 技术规格 1.2 系统框图 1.3 设备引脚分布 2 工作流程 2.1 系统功能描述 2.2 状态机描述 2.3 测距模式说明 3 控制接口 3.1 设备地址 3.2 IC写1个字节数据 3.3 IC读1个字节数据 3.4 IC写多个字节数据 3.5 IC读多个字节数据 3.6 IC…

cuda面试准备(一),架构调试

1 cuda架构 硬件方面 SP (streaming Process) ,SM (streaming multiprocessor) 是硬件(GPUhardware) 概念。而thread,block,grid,warp是软件上的(CUDA) 概念 SP:最基本的处理单元,streaming processor,也称为CUDA core,最后具体的指令和任务都是在SP上处理的。GPU进行并行…

镭速传输助力广电行业大数据高效分发,提升智慧融媒水平

随着互联网技术如大数据、人工智能、云计算等和移动通信技术如5G等的快速进步和实际应用&#xff0c;媒体行业发展正式进入智慧时代&#xff0c;智慧融媒成为媒体融合发展的新阶段&#xff0c;全面应用在超高清、云服务、融媒演播、VR等新兴技术为代表的各个方面。 以上技术的…

Kotlin协程runBlocking并发launch,Semaphore同步1个launch任务运行

Kotlin协程runBlocking并发launch&#xff0c;Semaphore同步1个launch任务运行 <dependency><groupId>org.jetbrains.kotlinx</groupId><artifactId>kotlinx-coroutines-core</artifactId><version>1.7.3</version><type>pom&…